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Internal Medicine, Gazi University

Assist. Prof. Dr. Murat Perit Çakir
Cognitive Science, METU

Date:10.08.2022



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Elmira Pourreza

Signature :

iv



ABSTRACT

SCREENING INFANTS DEVELOPMENTAL ASPECTS OF LEARNING
DURING STANDING BY MEASURING PRESSURE DISTRIBUTION

BENEATH THE FEET

Pourreza, Elmira
Ph.D., Department of Engineering Sciences

Supervisor: Assist. Prof. Dr. Senih Gürses

August 2022, 150 pages

This study investigates developmental changes in active usage of a contact surface

and pressure distribution beneath infants’ foot during learning of upright posture.

We started studying longitudinally on 22 female and 22 male infants at their 12.5th

months (1st trimester, T1) and kept on screening the same subjects at every three

months (19 females and 12 males at 15.5th months (T2), 17 females and 7 males at

18.4th months (T3)), in Gazi University Hospital, Social Pediatrics Department. Each

trial was fulfilled by an infant standing on a pressure pad placed on top of a force plate

to collect the pressure distribution data beneath the feet for 15 sec at T1, and 25-sec

at T2 and T3 and was repeated at least three times. Data collection sessions were

also recorded with the camera. We expected to monitor the developmental changes at

an infant’s standing experience during their 2nd-year epoch through time-frequency

domain analysis metrics on the overall CoPx and CoPy signals.The stabilogram plots

showed noticeable shrinkage both in AP and ML directions. The phase plane plots

showed shrinkage of the pattern in both CoPx and CoPy signals, and the amplitude

of the frequency density function estimates and the frequency spectrum of CoP de-
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creased significantly by time from T1 to T3. In the next part of the study, the image

processing analysis have been done on pressure pad matrices. Time and frequency

domain metrics of contact area, weight, pressure, and moment arms of front, mid,

and hind regions of each foot have been estimated. In the frequency domain metrics

there were significant shifts of the power of pressure distribution and moment arms

to the lower frequencies due to the trimesters. We observed high frequency pressure

vibration at the Mid foot at all trimesters. Further, we revealed higher frequency man-

ifestations of moment arm at Fore foot in regional CoPx, which may be pointing to

the role of the Fore foot as the controller and Mid foot as the load transmitter. More-

over, nonlinear dynamic analyses have been performed and led us to calculate the

characteristic metrics of the m-dimensional attractor dynamics constructed in phase-

space by estimating critical τ (time-delay operator) from the CoPx signal through

S-average displacement method. Further, Approximate Entropy (ApEn) metric was

calculated by using critical τ estimates, which showed an increase in ApEn, from T1

to T3. These metrics, which define the characteristics of the developmental stages of

motor learning, will help to illuminate the evolution of upright stance.

Keywords: Postural Control, Infant Biomechanics, Spatiotemporal Evolution, In-

fant’s Foot Development, Quiet Stance
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ÖZ

BEBEKLERDE “AYAKTA DİK DURUŞ” GELİŞİMİNİN AYAK ALTI
BASINÇ DAĞILIMININ İNCELENEREK İZLENMESİ

Pourreza, Elmira
Doktora, Mühendislik Bilimleri Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Senih Gürses

Ağustos 2022 , 150 sayfa

Bu çalışma, dik duruşun öğrenilmesi sırasında bir temas yüzeyinin aktif kullanımın-

daki gelişimsel değişiklikleri ve bebeklerin ayağının altındaki basınç dağılımını araş-

tırmaktadır. 12 aylık yaşlarında (1. trimester, T1) 22 kız ve 22 erkek bebek üzerinde

bir devamli çalışmaya başladık ve aynı denekleri her üç ayda bir (19 kadın ve 15 er-

kek 15.5 ayda (T2), 17 kadın ve 7 erkek 18.4 Ayda (T3), Gazi Üniversitesi Hastanesi,

Sosyal Pediatri Anabilim Dalı devam ettik. Her deneme, T1’de ayakların altındaki

basınç dağıtım verilerini 15 saniye boyunca ve T2 ve T3’te 25 saniye uzunluğunda

bir kuvvet platform üzerine yerleştirilmiş bir basınç pedi üzerinde duran bir bebek ta-

rafından gerçekleştirildi ve en az üç kez tekrarlandı. Veri toplama kurulumu ek olarak

bebeklerin tepkilerini videoya çekmek için bir kamera içermektedir. Genel CoPx ve

CoPy sinyalleri üzerindeki zaman-frekans etki alanı analizleri metrikleri aracılığıyla

bir bebeğin 2. yıl döneminde ayakta durma deneyimindeki gelişimsel değişiklikleri

izlemeyi umduk. Stabilogram grafikleri hem AP hem de ML yönlerinde fark edilir

bir küçülme gösterdi. Faz düzlemi çizimleri, hem CoPx hem de CoPy sinyallerinde

modelin küçüldüğünü gösterdi ve frekans yoğunluğu fonksiyonu tahminlerinin gen-
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liği ve CoP’nin frekans spektrumu zamanla T1’den T3’e önemli ölçüde azaldı. Ça-

lışmanın bir sonraki bölümünde, basınç pedi matrisleri üzerinde görüntü işleme ana-

lizi yapılmıştır. Her ayağın ön, orta ve arka bölgelerinin temas alanı, ağırlık, basınç

ve moment kollarının zaman ve frekans alanı metrikleri tahmin edilmiştir. Frekans

alanı ölçümlerinde, trimesterler nedeniyle basınç dağılımı ve moment kollarının gü-

cünde daha düşük frekanslara doğru önemli kaymalar oldu. Tüm trimesterlerde Orta

ayakta yüksek frekanslı basınç titreşimi gözlemledik. Ayrıca, bölgesel CoPx’te Ön

ayakta moment kolunun daha yüksek frekanslı tezahürlerini ortaya çıkardık; bu, Ön

ayağın kontrolör ve Orta ayağın yük taşıyıcısı olarak rolüne işaret ediyor olabilir.

Ayrıca, doğrusal olmayan dinamik analizler gerçekleştirilmiştir ve bizi, CoPx sinya-

linden S-ortalama yer değiştirme yoluyla (S-average displacement method) kritik τ

(zaman gecikme operatörü) tahmin ederek faz-uzayda oluşturulan m-boyutlu çekici

dinamiklerin karakteristik metriklerini hesaplamaya yönlendirmiştir. Ayrıca, kritik τ

üzerinden hesaplanan Entropi (ApEn) sonuçları, T1’den T3’e bir artış gösterdi. Motor

öğrenmenin gelişim aşamalarının özelliklerini tanımlayan bu metrikler, dik duruşun

evrimini aydınlatmaya yardımcı olacaktır.

Anahtar Kelimeler: Postur Kontrolu, Bebek Biyomekaniği, Mekân-zamansal Evrimi,

Bebek Ayağı Gelişimi, Sakin Duruş
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

It has been recently being investigated how the pressure distribution beneath the foot

points to the active usage of the foot in standing adults. Nevertheless, it offers new

perspectives in postural research by introducing foot-triggered sensory-motor control

strategies in quiet standing dynamics. Furthermore, the spatiotemporal evolution of

physiological postural control strategies has not clearly been identified yet. Thus, we

have chosen developmental aspects of the infant’s postural adjustments as a media to

explore learning of biped standing.

1.2 Human Posture

Human posture is defined as the individual’s positioning of the trunk and limbs ac-

cording to each other and their orientation in space [7]. There are a number of mile-

stones required for the development of posture during the first 18 months of a healthy

developing infant. This process begins with a situation where the body is fully sup-

ported by a surface and continues to a state that requires complex motor abilities such

as strength, muscle coordination, and balance, such as sitting and standing without

any support [8].

Learning to stand independently is a motor task with a high degree of difficulty [9].

The stages of child development from sitting to walking on their own represent a

timetable of significant milestones in the progress of coordination and motor control

[10, 11, 12]. In fact, it is possible for infants to support themselves in the stand-

1



ing position at approximately 8 months and stand independently at approximately 11

months [13]. Most infants start walking independently around12 months; some do

not walk until 15 months, but early walking is not associated with further develop-

ment in other areas [14]. The feet are crucial structures that help infants explore,

interact with, and study their physical and social environments, along with changes

in the central nervous system. The foot continues to change during infancy as it

transforms from an organ largely utilized for reaching to one with a weight-bearing

structure[15]. During this time the foot’s structures and functions must adapt to the

demands of weight bearing and become increasingly crucial for movement[16]. At

first, infants start walking with a wide-based gait. Knees are bent and arms flex at

the elbow. The whole body turns with every step; toes may be turned in or out. Feet

can hit the floor flat. Subsequent improvements provide greater stability and energy

efficiency. After a few months of practice, the center of gravity shifts back and the

trunk remains more stable, while the knees are extended, and the arms swing to either

side for balance. The toes are better aligned, and the infant can stand, turn, and lean

without tipping. Moreover, between the ages of 18-24, motor development increases

with the development of balance and responsiveness, with the emergence of running

and stair climbing [14]. For an infant, standing up and walking means stepping into

a new world where spatial constraints are removed. Posture control basically serves

two purposes: The first is to maintain balance by keeping the center of pressure and

the projection of the center of gravity within the support surface in the static state. Its

second purpose is to serve as an interface between action and perception in dynamic

conditions [17].

In 1999, Barella and Jeka conducted a study on 5 newborn infants to understand the

developmental changes of standing without support. Based on the known milestones

for the motor development process of newborns, they divided this process into 4 pe-

riods: 1. pulling to stand, (PS); 2. standing alone (SA); 3. walking onset, (WO); 4.

1.5 months post-walking, (PW). In this study, they examined the magnitude of the

contact force applied in the process of learning the upright posture, the amount of

body oscillation, and the temporal relationship between the applied force and body

sway in four different developmental periods. While the infants were standing on a

platform, they placed a contact surface that was asked to touch with their right hand.
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The results revealed that as the standing experience increased, the force applied to

the contact surface of the hand and body sways decreased. The applied force and

body sways in the anteroposterior axis were consistently proportional (r ∼ 0.65). In

the PS, SA, and WO periods body oscillations were 45 ms temporally ahead of the

contact force. In contrast, in the PW period, the temporal relationship was reversed,

and the applied force caused body oscillation (∼ 140 ms). These results show that

initially infants use surface contact as a mechanical purpose, but later for orientation

information that provides posture control [9].

In addition, in a study conducted by Metcalfe and Clark in 2000, on the devel-

opmental stages of infants, it was shown that posture and movement development

provide an important perspective for understanding individual development of the

perception-action relationship. In this study, 13 infants were examined over time

(cross-sectionally) in a quiet stance with their hands free or by lightly touching the

contact surface. Average oscillation amplitude results show that infants use light

touch to reduce sways (∼ 28-40%), as previously seen in adults [18]. In addition,

when using the contact surface, movement patterns of the head and body show de-

creased temporal coordination (∼ 25-40%) and increased temporal variability com-

pared to non-touch conditions. These findings are explained by the general conclusion

that in discussing the relationship between perception and action, according to indi-

vidual development, infants use somatosensory information exploratively / actively

to help them develop a correct control of upright posture [19].

Accordingly, in another study [20], which investigated the relationship between quiet

stance and light touch contact, they examined two types of newborns who learned

to stand. First, it is the longitudinal study of infants’ quiet stance during the first 9

months in the initial phase of independent walking. The second is to examine the

effect of sensory mechanical conditions on infants ’ posture control, such as light

touch support. As a result of this study, a) with increasing walking experience, the

oscillations of infants during standing upright evolve towards a lower frequency os-

cillation, b) walking provides a rich and dynamic sensory-motor experience and thus

contributes to the development of posture control of infants, c) A light touch on a

surface has been shown to stabilize the infant’s posture by changing the dynamics of

the swing as well as reducing the amplitude of its oscillations [20].
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On the other hand, it is important to examine the information content of posture oscil-

lation patterns during quiet stance. The posture oscillation patterns of 16 newborns (9

girls and 7 boys, average age = 11 months and 3 weeks) were compared in two exper-

imental conditions: standing while holding a toy on a force platform and not holding

it. The infants showed a lower amplitude posture swing and more complex swing

patterns while holding the toy. These changes show that infants adapt their posture

oscillations to make it easier to visually fix the toy in their hands. Infants exhibited

posture oscillation patterns that were seen as more exploratory in nature when they

simply stood. The exploratory posture oscillations that infants exhibit provide them

with the opportunity to learn about the possibilities of standing upright. These results

show that infants who have just started standing can control their posture depending

on the task [21].

In terms of research method and measurement techniques, the evaluation of early

walking patterns using plantar pressure distribution measurements of upright stance

promises new perspectives. On this topic, a study was conducted on 42 children in

the first year of walking [22]. In this study, plantar pressure distribution patterns were

measured every 3 months with a pressure pad. During this 1-year observation, infants

took several steps before reaching the platform to capture the loading pattern of the

foot during natural walking. Anthropometric data of the infants showed an increase

in height and body mass due to growth. In addition, they showed that there was a

significant decrease in the foot shape index due to the decrease in the width of the

middle foot and the increased foot length. This study shows that there are significant

changes in the shape and loading characteristics of the infant’s foot from standing

up to the time he/she starts walking. Some infant displayed a very mature plantar

pressure pattern after 1 year, while others continued to show an immature loading

pattern [22].

Regarding the quiet stance paradigm, Lee I. et al. [23] conducted a study. In this

study, they discussed two important approaches used in explaining the cause-effect

relationship. In the traditional one, changes in postural behavior are assumed to be the

result of differences in sensory information inputs. In this approach, more information

reduces posture oscillation and is referred to as "information assumption" [24, 25, 26].

On the other hand, in the second approach, there is the view that changes in postural
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metrics occur as a result of a facilitation provided by the active contribution of the

postural system to meet new demands imposed by task manipulations [27, 28, 29,

30]. In other words, the postural system actively increases or decreases oscillation to

facilitate achievement of a task (maintaining eye fixation, oscillating simultaneously

with a stimulus, etc.) This approach is called the "postural facilitation assumption".

With this approach, different tasks are not expected to result in different postural

behaviors. Rather, the postural system changes its dynamics in order to perform a

task: the system determines its behavior for a given set of task requirements [23].

In order to examine the postural oscillations discussed methodically in the above

paragraph, the sensory-motor and psycho-social development of upright posture in

infants must have reached a certain level of maturity [14]. However, before reaching

this level, infants have been observed to exhibit a dissociated type of posture behav-

ior compared to adults. It has been observed that infants use their feet one by one

(cannot use synchronously together) before they can stand upright (biped stance) us-

ing both feet, and even use a part of their feet (mostly the back part) preferentially.

Therefore, infants must have a motor repertoire [31] for achieving the characteristic

patterns seen in adults’ postural behaviors. In this case, the subject that needs to be

investigated is how infants spend the learning process in the second year of their life

from sitting without support to standing and walking without support. This process

must be closely observed to understand sensory-motor control strategies in infants.

To understand how the infant learns to stand and walk, we need to see its spatial

and temporal evolution. Based on our previous studies, simultaneous measurement

of plantar pressure distribution (distributed load system) in quiet stance is not only

temporal [32, 33, 34], but can also be said that it allows the spatial distribution to

be examined. The aim of this study is to illuminate the spatio-temporal evolution

of quiet stance by combining these two methods. Thus, for understanding the pos-

tural dynamics and control (sensory-motor control), beside the classical engineering

approach (stable equilibrium state), the modern approaches (statistical mechanics),

that provides freedom based on probabilistic quasi dynamics (local instability around

the equilibrium point) will also be beneficial. This modern approach obliges the dy-

namics of posture to be examined not only by time signals (CoP signal) but also by

underfoot load distribution measurements. At the end of this research, the analysis of
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the obtained data will be a powerful reference for clinical studies and will be a new

way of screening postural disorders for early-stage diagnosis.

The history of the study on the relationships between the functional anatomy of the

foot and the human upright posture goes back to researches in the 1950s [35, 36,

37, 38]. Recently, the relationship between the measurable distribution of pressure

beneath the feet during standing and active usage of the foot has been investigated.

However, revealing sensory-motor control strategies triggered by foot senses in quiet

stance dynamics offers a new perspective for posture research [39]. We believed that

learning upright posture should go to earlier stages in order to examine the spatiotem-

poral evolution of this behavioral relationship between active usage of the foot and

upright posture observed in adults. For this reason, assuming that the sensory-motor

and psycho-cognitive development of infants between 12 and 24 months is critical and

can be examined, we decided to start a mutual study with Gazi University Faculty of

Medicine, Social Pediatrics Department, which is planned to involve approximately

50 infants. Therefore, this project has a unique value in terms of sample size as well

as studying the first learning phases of standing upright with longitudinal depth.

However, the limited number of studies on the role of somatosensory inputs in the

postural control of infants suggests a notable gap in infant sensorimotor literature.

One of the reasons for this gap may be the difficulty in designing experimental situ-

ations / conditions that enable analysis of postural development in infants. Typically,

postural tasks require a quiet standing for 20-30 seconds. Obviously, this experiment

is a difficult, if not impossible, task for a baby who is just trying to learn upright

postural control. On the other hand, if the posture control is expected to be com-

pleted so that the required data of infant can be measured during the quiet stance, the

monitoring of the developmental processes may be missed. Therefore, it is necessary

to conceive an optimal data collection method and timing to monitor the spatial and

temporal evolution of physiological posture control strategies.

In this study, measuring infants in critical developmental periods gets possible as a

result of using the Robust Child Monitoring Appointment System together with the

Social Pediatrics Department and cooperating with their families. Thus, measure-

ments of standing upright posture from infants can be possible for a minimum of
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15 seconds during data collection sessions. These measurements, being collected by

a pressure pad (Tekscan® Matscan), will determine the pressure changes under the

foot, for the first time in future analyzes. It is the first time to learn the dynamics of

human upright posture through mapping the pressure under the foot with frame by

frame and pixel by pixel method, and it will make it possible to use it for enlight-

ening the postural control strategy. This research conducted with a larger number of

participants (44 infants) compared to studies with fewer infants in the past, therefore,

the richness of the findings and the reliability of the results will increase in this study

with a large group of participants. Moreover, high reliability percentage will make

this study a usable reference in the Children’s Clinic. Thus, in order to reveal the

dynamic characteristics of standing upright observed in adults and to understand how

the sensory-motor control strategies are formed, we started a study that aims to ob-

serve, measure and evaluate infants from the first moment they begin to experience

upright stance. The research questions we ask to achieve this goal are:

• How do infants learn to stand upright by using both feet together?

Observing the coordination and learning process, occurring during infants first

experience of quiet stance by using their feet one by one, and then using both

feet together (lateralization problem).

• How does the spatiotemporal evolution of physiological upright posture dy-

namics occur?

• How do sensory-motor control strategies develop in quiet stance dynamics in

infants?

Since the last two questions are about how dynamic patterns that have been

studied for a long time in adult posture are formed, we expect them to be dis-

covered. However, since the first question was highlighted when the first data

of this study was started to be collected and this situation is accepted a priori in

adults, our answer to this question can be discussed. Therefore, the hypothesis

we put at the beginning of the study was mostly directed to the answers we

would give to the last two questions. The metrics of non-linear systems derived

from the complex dynamics of posture oscillation seen in adults are information

dimensions (entropy metrics). Moreover, how these spatial (dynamics embed-
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ded in the phase-space) metrics evolved in time will be discussed in this study.

Our expectation is that the information dimension will shrink over time as the

transition from explorative search to exploitation is shown.

1.3 Obstacles, Contributions and Novelties

The obstacles of this study and our contributions are as follows:

• Study on the infants and its difficulties due to their young age, being dynamic,

less cooperative and patient during the data collection process, and the restrain

with the duration of the collected data make this investigation much more diffi-

cult

• The discontinuity of the infants during the longitudinal study also make some

restrictions on the analysis

• The greatest impediment of this study was the Covid-19 pandemic, that caused

the closure of the posture lab in Gazi Hospital and made us to stop the inves-

tigation before it’s over. Our plan was to complete 5 trimesters (T) within the

infants’ first year of walking (T1:12-14 months, T2:15-17, T3:18-20, T4:21-23,

T5:24-26). However, we had to stop at the beginning of T4.

• Despite all the above restrictions, this study makes its way through some sig-

nificant findings regarding the newly standing infants and we could catch some

of their major milestones during the transition from an unbalanced naive quiet

stance toward an experienced one.

• The high number of subjects, and a strong statistical results is also considered

a great success for us.

• This study and future studies based on this one will open new doors into infants’

posture and will reveal many unknown and uncertain issues regarding the foot

growth and development of standing and walking skills.
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1.4 The Outline of the Thesis

It is clear that measuring and quantifying the infants foot across early developmental

milestones is beneficial. Studies on younger kids who are just learning to walk, how-

ever, have provided only a limited amount of information, and there are still questions

and gaps in our knowledge about how the foot structure changes in response to the

application of pressure during the development of standing and walking skills [16].

Investigating the spatiotemporal evolution of physiological postural control strategies

in infants and exploring the developmental changes in active usage of a contact sur-

face by evidence-based clinical practice gives us the opportunity to explore the less

known aspects of the infants upright stance. Doing collaborative research in a multi-

disciplinary study provides extra benefits for filling the blank spots in technology and

public health and brings more reliable and applicable services for both healthy com-

munities and patients. We assume this study as a small section of a huge investigation

on the very unknown features of the early development phases in infants.
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CHAPTER 2

EXPERIMENTS AND METHODS

Experiments and data collection are performed in Posture Laboratory at Gazi Univer-

sity Hospital, Physical Therapy, and Rehabilitation Department.

2.1 Overview of the Subject testing and data acquisition

A longitudinally study on 22 female and 22 male healthy infants (mean age of 12.5

months old, and mean weight of 93.65±9.98 N) (first trimester, T1) was performed

and we kept on screening the same subjects at every three months (19 females and 12

males at mean age of 15.5 months old, and mean weight of 98.27±10.82 N (second

trimester, T2), 17 females and 7 males at mean age of 18.4 months old, and mean

weight of 107.94±12.25 N (third trimester, T3)), during their normal checkup ap-

pointments in Gazi University Hospital, Social Pediatrics Department-Ankara/Turkey.

The data collection procedure started when an infant and his/her parent came to the

lab. First, a short introduction about the test and its purpose was given to each infant’s

parents. Then the following questions were asked about the infant:

• Child’s personal information (name, surname, ID number)

• If he/she can stand without any help

• If they used a baby walker

• The month of standing alone

• The month of walking alone

• Explaining the test for them
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• Meanwhile, we had a friendly conversation with the infant and tried to commu-

nicate by giving him/her some toys to feel safe and relaxed around.

Before the experiments for each infant, gender, age, used hand (if certain), weight,

height, and foot length were recorded. These recorded information were further used

in interpreting the results of numerical and statistical analysis.

Next, for starting the test, the parents were asked to put the infant on the setup and let

him/her be there standing or sitting playing with toys and books until he/she gets used

to the setup (1-5 min). When the infant feels ready, the parents were instructed to put

him/her on the center of the square of the Tekscan® Matscan pressure pad, placed on

top of a Bertec® force platform, and try to take his/her attention for at least 3 seconds.

In this step, the weight (N) of the infant was measured with the force plate (3 sec).

Then, the main trial was starting. Each trial was fulfilled by an infant standing on a

pressure pad placed on top of a force plate to collect the pressure distribution data

beneath the feet for 15 sec at T1, and 25-sec long duration at T2 and T3 and was

repeated at least three times. During the data collection, infants’ parents were beside

them trying to get infants’ attention towards themselves preventing them from being

distracted and/or moving and walking around. After finishing the data collection,

the next appointment was given for 3 months later. Force and moment signals at

x-y-z axes were acquired at a sampling rate of 50 Hz by a force-plate (Bertec®,

FP4060-10 600×400mm). Center-of-Pressure (CoP) time signals at antero-posterior

(AP, CoPx) and medio-lateral (ML, CoPy) directions were then computed. Pressure

distribution data under each foot were collected at 50 Hz using Tekscan® Pressure

Pad. A picture taken during the experiment is given in Figure 2.1. The data collection

setup additionally contained one camera for videotaping the infants’ reactions.

2.2 Data Analysis

Postural control can be measured in several ways, but one of the most frequently used

methods to evaluate prospective postural control during movement is to quantify the

displacement of the center of pressure (CoP) over a relatively short time scale (sec-

onds or minutes). The CoP is the location of the vertical reaction vector on the surface
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Figure 2.1: An example subject during the data collection on a pressure pad placed

on top of a force plate

on which the individual is positioned and is a weighted average of the forces acting on

the surface [40]. Movement of the CoP is the body’s neuromuscular response to the

position of the body’s center of mass [40]. Movement of the CoP over time reflects

postural adjustment and creates a time series that can be analyzed for cyclical patterns

[41]. Since CoP signal is measured from a plane in force plate, it has two components,

CoPx and CoPy. While CoPx is the location of CoP on the antero-posterior direction,

CoPy is the location of CoP on the medio-lateral direction.

In the Pressure Pad software, since the video quality is not high enough and specially

in infants’ feet with low pressure and force, and due to an incomplete shape of the

feet, projection of foot shape is not perfect, so by applying the predesigned setup

of “Drawing Polygons” facility of the Pressure Pad Matscan® software for dividing

foot regions, each foot was divided into two regions as shown in figure 2.2. Selected

foot regions were heel region (talus and calcaneus bone), and five metatarsal bones

and phalanges; named as hind, and front regions, respectively. Since the arch of the

foot in infants is not completed yet, there is no mid-foot region in selected areas.

Distributed ground reaction forces were calculated then. The MatScan sensor detects

subject’s plantar pressure. This sensor is made up of over 2288 (4452) individual

pressure-sensing locations, which are referred to as "Sensing Elements" or "Sensels."

The sensels are arranged in rows and columns on the sensor. Each sensel is 70.2579

13



mm2 and the output of each sensel is divided into 256 increments and displayed as

a value ("Raw" sum) in the range of 0 to 255. Thus, pressure distribution data of

pre-mentioned regions in the left and right foot were obtained as a function of time.

Figure 2.2: Regions of the foot

Since the applied pressure in infants’ feet is lower than a healthy adult subject, for get-

ting the optimal results from the plantar pressure beneath infants’ feet, we changed

the sensitivity level of the MatScan to Mid-1, which is one step more sensitive to

the pressure than Default. Based on the method recommended by the MatScan man-

ufacturer (Tekscan), before starting the data collection on each subject, calibration

was performed. For calibration, the weight of the subject (in Newton) was separately

measured by Bertec force platform through a 3 seconds quiet stand of the subject

on the setup, and entered manually into the Matscan software. Then, this weight is

applied automatically at an appropriate scaling to the raw outputs of the sensing el-

ements such that the total force of the pressure pad is consistent with the weight of

the subject.Next, Force signals of each foot were obtained as a function of time by

averaging the pressure distribution data over its related plantar surface. And the four

regions of the foot at the first phase of the analysis were named as FL for fore left,FR

for fore right,HL for hind left and, HR for hind right (Figure 2.2).
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2.3 Time Series Analysis

Center of Pressure (CoP) of time signals from the data collected by the force plate and

the pressure pad were computed. In the time domain, mean and the variance at the

CoP time signals were estimated in both anterio-posterior (CoPx) and medio-lateral

(CoPy) directions. The representative plot of CoPx of a subject in T1 was given in

figure 2.3.

Figure 2.3: A Sample Plot of CoPx vs Time in T1

As shown in equation 2.1 and 2.2, these two components can be calculated using three

force plate signals, Fz, Mx, My. Since we collected the data through 15 seconds in

T1 and 25 seconds in T2, and T3, with 50 Hz, the array size of each trial was 750 and

1250, respectively.

CoPx(i) = −My(i)

Fz(i)
, i = 1, ..., 750 (2.1)

CoPy(i) =
Mx(i)

Fz(i)
, i = 1, ..., 750 (2.2)

This time series signals, from which is derived metrics to describe human postural

sway, was analyzed in both time and frequency domains. Before the analysis, linear

detrend had been applied to the CoP data.
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2.4 Frequency Domain Analysis

The frequency domain analysis is a good method to measure the amount of power

presented at each frequency. Therefore, understanding the dynamics of the body sway

and the strategies used by subjects through the spatiotemporal evolution is important.

2.4.1 Fast Fourier Transform (FFT)

To investigate the frequency characteristics of each foot’s Front and Hind regions’ sig-

nals, their force distributions were analyzed in the frequency domain. And to calculate

frequency domain measures, we used MATLAB Fast Fourier Transform (FFT) func-

tion. Time series were detrended linearly before Fast Fourier Transformation. In the

frequency domain, 50% and 95% power frequency, Centroidal Frequency (CFREQ),

and Frequency Dispersion were calculated from methods described in Prieto et al.

([41]).) and ([42]).

2.4.2 Spectral Moments

Spectral moments, µ(k) were calculated through the following equation for k =

0, 1, 2:

µk =
m∑
i=1

(i×∆f)k.Gx(i×∆f) (2.3)

Where ∆f (1/T; T being the data collection time) is the frequency resolution, m is

Nyquist frequency (1/2 of the sampling rate) divided by ∆f and Gx(f) is the power

spectral density function estimate as a function of frequency, f in [Hz], obtained by

FFT ([43]):

Rxx(τ) =
1

T

∫ T

0

X(t)X(t+ τ)dt

Gx(f) = 2

∫ +∞

−∞
Rxx(τ)e2πfτdτ

(2.4)
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Where τ is the delay operator and Rxx is the auto-correlation function.

The total power (POWER) is the integrated area of the power spectrum when k = 0

in equation (2.3).

POWER = µ0 =
m∑
i=1

Gx(i×∆f) (2.5)

The 50% and 95% power frequency are the frequency which is found below 50% and

95% of the total power.

v∑
i=1

Gx(i×∆f) ≥ 0.50× µ0 (2.6)

v∑
i=1

Gx(i×∆f) ≥ 0.95× µ0 (2.7)

Where v is the smallest integer for which the equation holds.

2.4.3 Centroidal frequency (CFREQ)

After calculating the spectral moments and power, centroidal frequency (CFREQ)

is defined as the frequency at which the spectral mass is concentrated, which is the

square root of the ratio of the second to the zeroth spectral moment (see equation 2.3):

CFREQ =

√
µ2

µ0

(2.8)

Where we can also call it as the second moment. Moreover, for postural analysis

we need more specific metric that gives us more reliable result in both high and low

frequencies, thus we used the modified CFREQ (CFREQM) which is estimated from

the equation below:

CFREQM =
µ1

µ0

(2.9)

Which is also called the weighted average or the first moment.
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2.4.4 Frequency dispersion (FREQD)

The frequency dispersion (FREQD) is a unitless measure of the variability in the

frequency content of the power spectral density:

FREQD =

√
1− µ2

1

µ0 × µ2

(2.10)

The frequency dispersion is zero for a pure sinusoid and increases with spectral band-

width to a maximum of one [44].

2.5 Pressure pad data analysis

2.5.1 Plantar pressure distribution chart

Plantar pressure measurements can be used to assess the loads to which the hu-

man body is subjected in quiet stance or normal walking. Measuring the distribu-

tion of force over each foot is useful as it provides detailed information specific to

each region of contact. In this study, we investigate on the pressure distribution be-

neath newly standing infants’ feet. Pressure pad distribution chart is an option in the

MatScan pressure pad software, in which the matrix of whole movie of the frame data

can be obtained. This matrix, which is called the plantar pressure distribution chart,

represent all the collected data (whole movie) and it is possible to monitor the plantar

pressure distribution changes during the quiet stance of the infant, frame by frame,

and pixel by pixel.

2.5.2 Image processing of pressure pad matrices

Image processing analysis is the method we used for analyzing the matrices of pres-

sure pad data frame by frame. In this method, we automized the previous method, the

one in which we monitored all the frames of a matrix of every trial by a normal eye,

and we took the record of any changes during 15 and 25 seconds of a quiet stance

(750 and 1250 frames of a matrix). The automatized method, using MATLAB, make
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tracking the changes faster, easier and more reliable, beside making possible to do

lots of data process and analyses.

In this method, first we import the pressure pad data to MATLAB software, (each data

represents one trial of a quiet stance of a subject), then we do the rest of the analysis

by MATLAB codes. The original data which is imported to MATLAB contains both

noise and required data, therefore, in the first step we need to eliminate noise from

original data. By excluding noise, we have almost pure signal of a quiet stance which

in the next step needs to be separated into left and right foot, and then with this code

we can divide each foot into three regions of Fore, Mid and Hind which is more ac-

curate with respect to the two regions we divided by the MatScan software tools. For

each foot’s region separation, we select 2 pixels of each foot one from first metatarsal

bone beneath the second finger, and next from the end of the calcaneus to determine

the index of the foot, and define the region limits of each foot ([45][46][47][48]).

Figure 2.4 shows the MATLAB figures in which a frame of the related matrix opens,

and we should choose the index margins of each foot first by clicking under the second

metatarsal region and then clicking on the lower calcaneus region and then press enter

key to define the action. This procedure can be repeated as many times as we need

and at the end the result of for example left foot index will be the mean of all the

indexes we defined. Additionally, the first frame which is opened for one foot is the

frame which has the most contact pixels with the mat, however the next frames will be

chosen randomly from 750 or 1250 frames of that matrix. The same process will be

repeated for the right foot and then we will have three identified regions for each foot,

and the required estimations and measurements can be calculated for each region or

the whole foot.

By investigation on each foot’s three regions (Fore, Mid, Hind) we can evaluate the

changes in pressure, force, moment arms (Anteroposterior (AP) and Mediolateral

(ML) fluctuations), contact area, stabilogram, and frequency domain (Fast Fourier

Transformation (FFT)) in each region (FL, FR, ML, MR, HL, HR) separately, and

then each region’s information can be compared with each foot’s and both feet’s data.

Moreover, the changes of each region through the time can be followed by compar-

ing each trimester’s findings with the previous or next ones. Also, by the help of
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Figure 2.4: Frames of a pressure pad matrix for left and right foot to define the foot

index.

this method the foot displacement problem is solved, and we can follow the changes

during any foot movements and record the foot displacement frames as well as fluctu-

ations in force and pressure distribution. We named this foot displacement as contact

loss frames and the number of frames in which the foot has no contact as ∆t.

After dividing each foot into three regions, the most critical evaluation that needed to

be assessed during the image processing analysis are:

• The AP and ML moment arms (cm):

Anteroposterior: AP-FL, AP-FR, AP-ML, AP-MR, AP-HL, AP-HR

Mediolateral: ML-FL, ML-FR, ML-ML, ML-MR, ML-HL, ML-HR

Pressure pad data is a matrix with 44 rows and 52 columns. And depend-

ing on the data collection time, we have 44×750×52 (for 15sec trials), and

44×1250×52 (for 25sec trials) matrices. Figure 2.5. shows the pressure pad

matrix and three segments of a foot. All the estimations and calculations of this

section will be based on these figures and matrices.

Based on the figure 2.5, for estimating the weighted average moment arms, the

following equations are calculated:

dFL(AP ) =

∑
i di
∑

j fij∑
i

∑
j fij

(2.11)

dFL(ML) =

∑
i di
∑

j fij∑
i

∑
j fij

(2.12)
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Figure 2.5: pressure pad matrix with 44 rows and 52 columns, three segments of the

left foot (FL, ML, HL)

Where, AP is anteroposterior, and ML is mediolateral directions. fij is random

variable, i is the number of rows, and j is the number of columns. For obtaining

the weighted average moment arms of ML, and HL, and FR, MR, and HR,

equations 2.11, and 2.12 can be repeated for those regions. Since the direction

of matrix rows is positive from top to down, while the positive direction of

anteroposterior is from down to top, in the MATLAB code we subtract the

number of rows from the related number.

• Pressure of each region (kPa):

The physical dimension of the pressure on each pixel of the pressure pad which

is obtained from the Matscan software is given as kPa, and in order to change

that to N, we need to multiply it with 0.0702579, thus we can write the follow-

ing equation for the pressure on the Fore region of the left foot:

dFL(P ) =
(
∑

i di
∑

j pij)× 0.0702579

(
∑

i

∑
j pij)× 0.0702579

(2.13)

The equation 2.13 can be repeated for all the six regions of the feet for obtaining

the related moment arm from the pressure data on each region of the feet.
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• Area of each region (cm2):

The area of each pixel on the pressure pad is equal to 0.702579 cm2, and for

calculating the area for feet’s six regions in [cm2], we multiply the number of

pixels in each row and column of each region (n) by the value of
√

0.702579,

which is the value to change the result from pixel to cm.

• Weight of each region and total weight (N):

Weight of each region is calculated by multiplying the pressure of that region

by 0.0702579, which is the value of changing the pressure results from kPa

to N. The total weight is being obtained from adding the six region’s weight

values.

• Normalized weights with respect to each foot’s weight (ratio):

There is also the normalized weight which is being obtained through the fol-

lowing equations for each region with respect to that foot’s weight:

RFL =
WFL

WL

, RFR =
WFR

WR

(2.14)

RML =
WML

WL

, RMR =
WMR

WR

(2.15)

RHL =
WHL

WL

, RHR =
WHR

WR

(2.16)

Where WL(t) is:

WL(t) =
∑

K=F,M,H

WKL(t) (2.17)

And WR(t) is:

WR(t) =
∑

K=F,M,H

WKR(t) (2.18)

• Normalized pressure with respect to area of each region (kPa):
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The pressure signal from the pressure pad, for each pixel of the mat (pij), is

obtained as kPa:

kPa =
N

cm2

=
N

10−4m2

=
N

m2
104

=
N

m2
· 10 · 103

= 10kPa

(2.19)

Since the area of each pixel is 0.702579 cm2, so we multiply each pij with this

area, which gives us a metric in N (kPa · cm2 = N ). So, then by summation of

fij [N] on both i and j, we obtain the total Regional Weight (Force):

WRegional =
∑
i

∑
j

pij · 0.702579(cm2)

= 0.702579(cm2)
∑
i

∑
j

pij

(2.20)

Where, for total weight of each region, we repeat the above equation. Next, for

estimating the regional mean pressure we divide the total regional weight to the

area of that region:

p̄FL =
WFL

AFL
, p̄FR =

WFR

AFR
(2.21)

p̄ML =
WML

AML

, p̄MR =
WMR

AMR

(2.22)

p̄HL =
WHL

AHL
, p̄HR =

WHR

AHR
(2.23)
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Thus, by substituting one of the above equations, we can rewrite it as follow:

p̄Regional =
0.702579(cm2)

∑
i

∑
j pij

n · 0.702579(cm2)
=

∑
i

∑
j pij∑

i

∑
j 1ij (2.24)

Where, n is the total number of pixels in each row and column of each region.

• The frequency domain metrics (µ(k), CFRQ, and FD, (Equations 2.3, 2.8, 2.10))

• Mean and variance of weights and moment arms

• Plots of Weights, Moment arms, Contact area, Stabilogram, FFT, and PSD

• Runs test for randomness which is an algorithm to detect if the values in the

data are in a random order or not. The test is based on the number of runs of

consecutive values above or below the mean of data vector. The result h is 1 if

the test rejects the null hypothesis at the 5% significance level, or 0 otherwise.

2.6 Statistical Analysis

Statistical analysis is the science of collecting, exploring and presenting large amounts

of data to discover underlying patterns and trends. In this study we applied different

types of the statistical analysis due to the different purposes for data evaluation. Since

from all the subjects that were being studied, there were five female subjects that

have been come to all the three trimesters and formed a group of common subjects

that needed to be analyzed through the repeated measure analysis with a significance

level of 0.05. The other type of the statistical analysis was belong to the all subjects

that created a larger group with a much higher statistical power than the five subjects.

And, since there were several metrics that we needed to investigate, the Multi-Factor,

(Univariate) type of the analysis with a significance level of 0.05 was conducted to

examine the effects of the Trimester, Foot, Region, and Gender. Moreover, for the

first section of the thesis (Overall CoPx and CoPy), we did the One-Way ANOVA to

study the general effects of the Trimesters on the frequency metrics.
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CHAPTER 3

RESULTS

Results obtained from the experiments are presented in this chapter. First, the time se-

ries analysis and frequency domain analysis and then results obtained from statistical

analysis are presented.

3.1 Overall CoPx and CoPy Analysis

3.1.1 Time Domain Analysis Results of the CoPx and CoPy signals

The following time domain figures are the graphs of an exemplar female subject,

showing the development stages, for three trimester T1, T2, and T3, and comparing

them with an adult sample.

3.1.1.1 CoPx and CoPy signals

CoPx plot shows the subject’s behavior during the trial in anteroposterior axis. The

path of change and develop in the anteroposterior axis can be followed in figure 3.1

This figure shows the CoPx vs time, through eighteen months of an infant, and its

comparison with an adult plot. There is a decrease in the amplitude and frequency

form T1 to T3, which shows an adaptation of an infant to standing and controlling the

posture.

The same pattern of improvement can be observed in the CoPy plot. CoPy plot shows

the subject’s behavior during the trial in mediolateral axis. The path of change and

develop in the mediolateral axis can be followed in figure 3.2.
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Figure 3.1: CoPx plot vs Time of an exemplar subject in T1, T2, T3 and an Adult

Figure 3.2: CoPy plot vs Time of an exemplar subject in T1, T2, T3 and an Adult

3.1.1.2 Stabilogram

Stabilogram which is a graphical representation of the small movements of a person

in a steady stance (CoPy versus CoPx) is also a good way of space evaluation in

postural control. The reason for plotting stabilogram is to eliminate time from the

graph, meaning that the points in the stabilogram (for example two points near each

other) are not related by the time, which means if two points are near each other they

are not necessarily happened at the same time, this is a space neighborhood, not the

time. The other important result from the stabilogram graph is the final pattern in

space. The pattern of an adult stabilogram is a mature signature, while the infant’s
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graph is a random scattered immature pattern. Figure 3.3 reveals how this pattern

changes and shrinks during infant’s growth from 12 to 18 months. And gradually it

becomes more like an adult pattern.

Figure 3.3: Stabilogram plot of an exemplar subject in T1, T2, T3 and an Adult

3.1.1.3 Phase plane

Phase plane is the graphical representation of the position (CoP) versus its velocity. It

illustrates with how much velocity the infant has visited the corresponding position.

For example, if the infant has visited a position with too high (positive or negative)

velocities, it means that he/she has been spent the minimum time in that position,

while in low velocities, the position has been visited more frequently and much more

time has been spent there. Figure 3.4, clearly reveals this in the characteristic pattern

observed through the following epochs information and tells the differences in veloc-

ity and positions from 12 months to 18 months, as well as its comparison with adult

in both CoPx and CoPy signals.

3.1.2 Frequency Domain Analysis Results of the CoPx and CoPy signals

The following frequency domain figures are the graphs of an exemplar female sub-

ject, showing the developmental stages, for three trimester T1, T2, and T3. In the

Magnitude of CoPx and CoPy plots of frequency, we can see how the frequency
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(a) Phase Plane of CoPx

(b) Phase Plane of CoPy

Figure 3.4: Phase plane of a) CoPx b) CoPy of an exemplar subject in T1, T2, T3 and

an Adult
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shifts towards the left of the plot (lower frequencies), as the infant passes from T1 to

T3.See figure 3.5

3.1.3 Statistical Analysis

In this study, One-Way ANOVA with a significance level of 0.05 was conducted to

compare independent variables, which are the trimesters (T1, T2, T3). Metrics in-

cluded in statistical analysis are Mean, Variance, %50 and %95 Power Frequency,

CFREQ, and FD. The detailed table of metrics that have been significantly different

are the following:

Table 3.1: Mean and Standard deviations of all the significantly different metrics for

overall CoPx and CoPy

IV

DV
CFREQ 50%PF 90%PF

CoPx

Trimester

T1

T2

T3

2.39±0.36a,b

1.65 ± 0.15

1.55± 0.14

0.64±0.40a,b

0.34 ± 0.15

0.33± 0.16

2.26±0.54a,b

1.54 ± 0.48

1.35± 0.32

CoPy

Trimester

T1

T2

T3

2.86±0.41a,b

1.70 ± 0.27

1.60± 0.139

0.58±0.45a,b

0.33 ± 0.20

0.24± 0.14

2.34±1.06a,b

1.57 ± 0.69

1.16± 0.40

a. T1>T2, b. T1>T3, c. T2>T3
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(a) Frequency plot of CoPx

(b) Frequency plot of CoPy

Figure 3.5: Magnitude of a) CoPx b) CoPy plot vs Freq. of an exemplar subject in

T1, T2, T3, and an Adult
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3.2 Pressure pad data analysis

3.2.1 Plantar pressure distribution chart

For analysis of the pressure distribution chart, a "MATLAB" code is needed for get-

ting the required information for each infant and trial, to observe the pressure changes

in both feet and in each trial. It also helps to monitor the path of changes of pressure

distribution through the study from 12 months to 24 months. To see how the spa-

tiotemporal evolution effect the changes in the plantar pressure distribution during

infants second year of life, we need to observe each foot section closely (frame by

frame and pixel by pixel). Before writing a code for this purpose, we needed to re-

alize in which aspects we are interested to follow the pressure changes, and after

making this goal clear, we can write the related code. Thus, first there was a need

to explore some subject’s trimester trials manually, which is scanning each matrix by

a human eye, frame by frame and pixel by pixel. After this process, the interested

regions and aspects that are needed to be investigated by detail become clear and the

code can be written based on the required information and metrics.

Therefore, the analysis started by a manual exploring with human eye: Figure 3.6

shows a random frame of an infant matrix, in which a quiet stance is taking place. For

this investigation, a group of five common subjects from three trimester have been

chosen, to see the differences of each trimester and comparing them with previous

ones, as well as comparing infants’ stance behavior with each other. For all five

subjects, the first trimester trials’ matrix includes 750 frames (since they stand for 15

seconds), and the second and third trimester trials’ matrix includes 1250 frames (since

they stand for 25 seconds). In all the matrices, we defined three ranges of forces to

color the foot regions based on these ranges. For the forces between 1-15 (N), the

pixels become yellow (Y), for the forces between 15-30 (N), the pixels become blue

(B), and for the forces larger than 30 (N), the pixels become red (R), (Figure 3.6).

Based on the exemplar matrix shown in Figure (3.6), each infant’s three trimester tri-

als had been investigated frame by frame and the important observations were noted.

The most critical aspects that needed to be noticed during the matrix analysis are:
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Figure 3.6: Plantar Pressure distribution based on Force categories

• The position of both feet with respect to the X and Y axis and each other

• Foot shape (is it a complete foot shape or not)

• If the feet have fully contact with the pad

• If there is any foot displacement during the trial

• The positions of force distribution

• The AP sways and number of contact loss of the six foot regions (FL, FR, ML,

MR, HL, HR) during the sways, if there is any

• If any force on toes is noticed

• Which foot is more stable

• If any projection of arches has been noticed

Then, the next step is to convert this information collected through the human eye ob-

servation into a code, in which we can be able to analyze these changes and behavior

in a more reliable and trusted way and evaluate the required metrics.
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3.2.2 Image processing of pressure pad matrices

In the previous section, the analysis started by a manual exploring with human eye,

and there was a close observation on the path of changes of pressure distribution

through the study from 12 to 20 months. In this section of study, as we mentioned

earlier, the investigation continued by enhancing a "MATLAB" code for the purpose

of the image processing of the pressure pad matrices.

The analysis on each foot’s three regions which are: FL, FR, ML, MR, HL, and HR

presented the changes in pressure, force, moment arms (AP and ML fluctuations),

contact area, stabilogram, and frequency domain (FFT, and PSD) in each region sep-

arately, and then each region’s information can be compared with each foot’s and both

feet’s data. Moreover, the track of changes of each region through the time followed

by comparing each trimester’s findings with the previous or next ones. Also, by the

help of this method the foot displacement problem solved, and we can follow the

changes during any foot movements and record the foot displacement frames as well

as fluctuations in force and pressure distribution.

From all the subjects, there were 5 common subjects (all Female) for three trimesters.

For each trimester of each subject, we did the image processing analyses and from

total of 5 subjects and within their 15 trials there were total 4 trials in which the

subjects have displaced one of their foot, which was their left foot. Two of these 4

displacements belong to subject one’s T1 and T2, and one of them belongs to subject

four’s T2, and the other one is for subject five’s T3. The number of ∆t (foot contact

loss frames) from all the subjects in which the foot had contact loss was between 4

and 10 frames (4<∆t<10).

Table (3.2) shows the contact loss frames of each foot and their length for 5 subject

in three trimesters. It also shows how many times the foot has lost its contact, which

is the number of ∆t repeat. For example, subject 1, T1, has two ∆t (4 and 7) repeats,

which indicate that this subject has two foot displacements, first for 4 frames (from

445 to 551), and then had another for 7 frames long (form 710 to 717).
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Table 3.2: Contact loss frames of each foot and their ∆t for 5 common subjects in

three trimesters.

Subject Trimester
Contact Loss Frames ∆t

L R L R

Subject 1

T1 [545-551,710-717] - 4,7 -

T2 [489-493,545-551] - 5,7 -

T3 - - - -

Subject 2

T1 - - - -

T2 - - - -

T3 - - - -

Subject 3

T1 - - - -

T2 - - - -

T3 - - - -

Subject 4

T1 - - - -

T2 [414-417] - 4 -

T3 - - - -

Subject 5

T1 - - - -

T2 - - - -

T3 [759-768] - 10 -

3.2.3 Statistical Analysis

In the statistical analysis of this section we want to know if our independent variable

which is the three trimester groups and is a categorical variable, has a significant

influence on the dependent variable that’s all the numeric measurements including

the frequency and time metrics.

So, the null hypothesis is that there’s not a significant difference in the parametric

values of the infants during their first 6 month of post standing (T1, T2, T3), and the

alternative hypotheses, which is also known as the research hypothesis or scientific

hypothesis, is that there is a shift from right to left spectral band in the parametric
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values of frequency domain metrics of the infants during their first 6 month of post

standing (T1, T2, T3), and we can follow the spatiotemporal evolution from this anal-

ysis. The parametric values that we analyzed in the SPPS are: Centroidal frequency

(CRFQ), frequency dispersion (FD), 50% and 90% power Frequency and mean and

variance of the anteroposterior moment arms and pressure.

There were two groups of analysis based on the subjects. First, we had repeated

measure analysis for our 5 common female subjects, and second, we did General

Linear Model Univariate (Multi-factor ANOVA) for 31 subjects.

3.2.3.1 Repeated Measure ANOVA

In this method, we compare the results of the 5 common female subjects that have

come to all the three trimesters’ data collection. Therefore, the analysis need to be

repeated measure ANOVA.

In the repeated measure ANOVA, there are two factors to do the analysis on the

within subjects variables (Trimester and region) for each metric (CFREQ, FD, 50%

and 90% PF, Mean, and Variance). The results of the analysis are divided in to two

main sections of AP moment arms (CoPx), and pressure signals.

• SPSS result of Repeated Measure ANOVA of 5 Common Subjects for Time

Domain in Pressure Distribution and CoPx signals::

– Pressure CFREQ, and CFREQM(Modified): The results of CFREQ

and CFREQM of pressure signal showed significantly decreased values

in Fore region,for both left and right foot, and Mid region for right foot.

These results showed the Major frequency shifts in pressure signal hap-

pens on the fore feet, while the hind feet are almost stable.(Figure 3.7, and

Table 3.3)

– CoPx CFREQ, and CFREQM(Modified): The results of CFREQ showed

significantly different values for Mid and Hind regions, in both left and

right foot, while for the CFREQM, beside the Mid and Hind feet, fore

regions (FL&FR) were also significantly different (Table 3.4) due to the
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(a) CFREQ

(b) CFREQM

Figure 3.7: Five common subjects’ a) CFREQ and b) CFREQM of Pressure signal in

each foot region, from T1 to T3

36



difference in CFREQ, and CFREQM equations.

Based on these two equations (2.8 & 2.9), we can say that equation 2.8

causes the effect of small frequencies (0<f<1) getting smaller and large

frequencies getting larger, as a result of the second moment; i.e., while

punishing the frequencies smaller than 1, rewarding the larger frequen-

cies. Thus, when passing from T1 to T2 and T3, the power shifts towards

the lower frequency band, and while CFREQ is recognizing this shift only

in Mid and Hind regions, the CFREQM metric is more sensitive and can

follow this shift in Fore region as well. On the other hand, these results

are related to the comparison of foot regions with trimester, and from

the previous observations during the data collection, we know that at first

the most variations and noise were noticed on the Hind and Mid regions,

since the infants were mostly stand on these regions, and the role of the

Fore foot was almost negligible because at first fore foot and specially fin-

gers didn’t contain noticeable force, they were mostly folded and it was

like the infant wants to grasp the ground with the fingers and lean to the

posterior parts of the foot to prevent falling, and a large amount of the

force was shifting between two hind regions, while gradually in T2, and

then T3, fore foot also got some variation of the force transmission and its

role gets more noticeable in time (from T1 to T3).See figure (3.8)

– Pressure FD: The results of FD of pressure signal showed increase in

complexity of signal in both Fore feet, and Mid-right regions. (Figure 3.9,

and Table 3.3)

– CoPx FD: The FD results showed a significant increase in complexity

from T1 to T2 and T3 in all three regions of the left foot, while for the

right foot there was only a significant increase in the hind-foot from T2 to

T3, (Figure 3.9). There were significantly higher complexity in FL (T2 >

T1&T3 > T1), ML (T2 > T1&T3 > T1), HL(T2 > T1&T3 > T1),

and HR (T3 > T2).See table (3.4)

We know that pure sine signal has FD=0, and the more complexity in sig-

nal causes an increase in FD from 0 up to maximum=1 ([41]). And here,

we can follow the fact that the infants CoPx signals get more complex in
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(a) CFREQ

(b) CFREQM

Figure 3.8: Five common subjects’ a) CFREQ and b) CFREQM of CoPx in each foot

region, from T1 to T3
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(a) FD of Pressure

(b) FD of CoPx

Figure 3.9: Five common subjects’ a) FD of Pressure and b) FD of CoPx in each foot

region, from T1 to T3
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time from T1 to T3.

– Pressure 50% and 90% Power Frequency: The 50% power frequency

results showed a significant decrease in MR from T1 to T2, and the 90%

power frequency results revealed a significant decrease in FL, ML, and

MR regions of the foot from T1 to T3 (Figure 3.10, and Table 3.3)

– CoPx 50% and 90% Power Frequency: There was a shift to the lower

frequencies (left) and a significant decrease in the 50% and 90% PF (Fig-

ure 3.11), when trimesters progressed from T1 to T3.See table (3.4)
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(a) 50%PF

(b) 90%PF

Figure 3.10: Five common subjects’ a) 50% PF and b) 90% PF of Pressure signal in

each foot region, from T1 to T3
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(a) 50%PF

(b) 90%PF

Figure 3.11: Five common subjects’ a) 50% PF and b) 90% PF of CoPx in each foot

region, from T1 to T3
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3.2.3.2 Multi-factor ANOVA

The results of the multi-factor ANOVA cover two main sections of the analysis:

CoPx, and Pressure results, and each of these main sections have been analyzed in

time domain, including Mean and Variance metrics, and frequency domain including

CFREQ, FD, 50% and 90% PF metrics. So, a factorial ANOVA (Univariate) was con-

ducted to compare the main effects of Trimester, Foot, Region and Gender (M:Male,

F: Female) which are the Independent Variables as well as their interaction effects

on the CFREQ,CFREQM, FD, 50% and 90% PF, and Mean and Variance metrics

(Dependent Variables).

• SPSS result of Multi-factor ANOVA for Time Domain in Pressure Distri-

bution and CoPx signals:

– Pressure Mean: In the Mean metric of the time domain in pressure distri-

bution, the Levine’s test showed that the variances of the groups were not

equal (F(35, 294)=3.381, p=.000). The significantly different results were

observed in Region at p<.001, and Gender at p=.005.See Figure (3.12)

Figure 3.12: Mean of Pressure in each region and gender

Region: The overall mean of regions is 16 ± 7.37kPa, however, Hind foot

region is 23.89±6.47kPa, while Mid- 13.87±3.91kPa, and Front foot region
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is 10.26 ± 2.51kPa. The above information may point to the fact that Hind

region is acting as a support while front region has the least pressure. All of

the regions are significantly mutually different with respect to each other. The

main effect of Region yielded an effect size of 0.619 indicating that 61.9% of

the variance in the Mean metric was explained by Region (F(2, 323)=262.833,

p=.000).

Moreover, based on the observations during the manual image processing pro-

cedure, the pressure distribution on T1 was mostly focused on the Hind and

Mid regions, while there was scattered low pressures on Fore region (Figure

3.13.a). This pattern changed in time, and by passing through T1 to T2 and T3,

the path of pressure beside Hind and Mid, followed toward Fore region as well.

Such that in T2 and then T3, the amount of pressure applied on Fore region

increased respectively (Figure 3.13.b,c). The pressure under the toe was also

got noticeable by moving from T1 toward T3. Figure (3.13) shows the changes

in the pressure distribution during the pass from 12 months to 20 months in

infants.

Further more, the pattern of the pressure on the Mid region was also notable.

This pattern, especially during the first trimester, was a bean shape overall

higher pressure, concentrated on the Hind and Mid regions, such that while

the pressure on the Hind foot was mostly the same, there was a change in the

pressure distribution under the Mid foot. Two type of pressure distribution was

noticed on Mid foot, the first one was a higher pressure distribution on the outer

mid feet (Ipsilateral), while the second was mostly on the inner side of the one

Mid foot and the outer side of the other Mid foot (Contralateral). These two

pattern were randomly repeated, and since arch projection hasn’t started yet,

the medial side of the foot was carrying pressure as much as the lateral side.

Gender: Male subjects have significantly larger pressure than females. The

main effect of Gender yielded an effect size of 0.024 indicating that 2.4% of

the variance in the Mean metric was explained by Gender (F(1, 323)=7.947,

p=.005).

– CoPx Mean: The Mean analysis in the CoPx metric gives us the infor-

mation about the position of each foot region on the pressure pad in [cm]
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(a) Plantar Pressure distribution, T1 (b) Plantar Pressure distribution, T2

(c) Plantar Pressure distribution, T3 (d) Plantar Pressure distribution on M and H

Figure 3.13: Plantar Pressure distribution from T1 to T3. a) forces between 1-15 (N),

shown in yellow, b) forces between 15-30 (N), shown in blue, c) forces larger than

30 (N), are shown in red, d) Pressure on the Mid and Hind regions (Continuous blue

path is contralateral, dotted path is Ipsilateral)
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with respect to the i,j axis. Since infants are more mobile regarding adults,

it is more probable that the position of both feet may not be in line, and

this plot gives us the mean related coordination for each foot region in

three trimesters. Also, the high variance of the mean metric is due to the

foot displacements that have been accrued in some of the subjects during

the data collection period (3.14).

Figure 3.14: Mean of CoPx in each foot and region

– Pressure Variance: In the Variance metric of the time domain in pressure

distribution, the Levine’s test showed that the variances of the groups were

not equal (F(35, 294)=5.371, p=.000). The significantly different results

were observed in Region at p<.001.See Figure (3.15)

Region: the variance of the Hind region is significantly larger than Fore and

Mid regions. The main effect of Region yielded an effect size of 0.467 indi-

cating that 46.7% of the variance in the Mean metric was explained by Region

(F(2, 323)=141.313, p=.000).

– CoPx Variance: Although there is no significant difference in the trimester

variance, it is valuable to estimate the area under the PSD. This estimate

is about the overall walk at all frequencies of CoP at Anteroposterior di-

rection in all foot regions and Gender from T1 to T3.(Figure3.16)
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Figure 3.15: Variance of Pressure in each region

• SPSS result of Multi-factor ANOVA for Frequency Domain in Pressure

Distribution and CoPx signals:

– Pressure CFREQ: In CFREQ of the frequency domain metrics, the Levine’s

test showed that the variances of the groups were not equal (F(35, 294)=1.876,

p=.003). The significantly different results were observed in Trimester,

and Region, both at p<.001.See Figure (3.17)

Trimester: In trimesters, there was a shift from right to left (lower frequencies)

when T1 proceeds towards T3. The main effect of Trimester yielded an effect

size of 0.120 indicating that 12.0% of the variance in the CFREQ metric was

explained by Trimester (F(2, 323)=21.989, p=.000).

Region: Mid region has a significantly larger frequency band of power (about

2Hz, which is resonance frequency of walking) compared to Fore and Hind

regions. The main effect of Region yielded an effect size of 0.100 indicating

that 10.0% of the variance in the Mean metric was explained by Region (F(2,

323)=17.997, p=.000).

– CoPx CFREQ: Starting with CFREQ of the frequency domain metrics,

the Levine’s test showed that the variances of the groups were not equal
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Figure 3.16: Variance of CoPx in each region and gender

(F(35, 294)=1.843, p=.004). The significantly different results were ob-

served in Trimester, Region, and Gender at p<.001, p<.001, and p=.013,

respectively, Figure(3.18).

Trimester: In trimesters, there was a shift from right to left (lower frequencies)

when T1 proceeds towards T3. The main effect of Trimester yielded an effect

size of 0.119 indicating that 11.9% of the variance in the CFREQ metric was

explained by Trimester (F(2, 323)=21.855, p=.000).

Region: There was larger CFREQ value in Fore region with respect to Mid

and Hind. The main effect of Region yielded an effect size of 0.124 indicating

that 12.4% of the variance in the CFREQ metric was explained by Region (F(2,

323)=22.897, p=.000).

Gender: Females had larger CFREQ than males. The main effect of Gen-

der yielded an effect size of 0.019 indicating that 1.9% of the variance in the

CFREQ metric was explained by Gender (F(1, 323)=6.247, p=.013).

– Pressure FD: In the frequency dispersion metric, the Levine’s test showed

that the variances of the groups were not equal (F(35, 294)=1.497, p=.040).

The significantly different results were observed in Trimester, and Gen-

der at p<.001, and p=.002, respectively.See Figure (3.19)
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Figure 3.17: CFREQ of Pressure in each region from T1 to T3

Trimester: By moving from T1 to T3, Complexity increases in all trimesters,

respectively.The main effect of Trimester yielded an effect size of 0.284 indi-

cating that 28.4% of the variance in the FD metric was explained by Trimester

(F(2, 323)=64.102, p=.000).

Gender: Female has a higher complexity compared to male in pressure dis-

tribution. The main effect of Gender yielded an effect size of 0.030 indicat-

ing that 3.0% of the variance in the FD metric was explained by Gender (F(1,

323)=10.042, p=.002).

Region: Although multi comparison post-hoc analysis dose not point to a sig-

nificant value, (P=.079), there exist a significant trend between front compared

to hind region, presenting a higher FD in Hind foot.

– CoPx FD: In the frequency dispersion metric, the Levine’s test showed

that the variances of the groups were equal (F(35, 294)=1.168, p=.245).

The significantly different results were observed in Trimester, and Re-

gion at p<.001, and p=.042, respectively. See Figure (3.20)

Trimester: By moving from T1 to T3, Complexity increases in all trimesters,

respectively.The main effect of Trimester yielded an effect size of 0.311 indi-

cating that 31.1% of the variance in the FD metric was explained by Trimester
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Figure 3.18: CFREQ of CoPx in each region and gender from T1 to T3

(F(2, 323)=72.813, p=.000).

Region: The Hind region presents much more complex signal patterns com-

pared to fore region. The main effect of Region yielded an effect size of 0.019

indicating that 1.9% of the variance in the FD metric was explained by Region

(F(2, 323)=3.190, p=.042).

– Pressure 50% and 90% Power Frequency: In the 50% and 90% Power

Frequency metric the Levine’s test showed that the variances of the groups

were not equal, with (F(35, 294)= 3.289, p=.000) for 50% PF and (F(35,

294)= 2.271, p=.000) for 90% PF. The analysis showed significantly dif-

ferent results in Trimester for 50% PF at p<.001, and Trimester and

Region for 90% PF, both at p<.001.See Figure (3.21)

Trimester: The cut off frequencies of 50% power are 0.638, 0.360, and 0.333

with respect to three trimesters, respectively. On the other hand, the cut off

frequencies of 90% power are 2.072, 1.475, and 1.206 with respect to three

trimesters, respectively. When the cut off frequency of 50% power is compared

against adult spectrum, we observe that 50% power frequency bands of pressure

distribution are within the adult spectrum. However, cut off frequency of 90%

power of CoPx in infants has still 10 times higher (faster) frequency bands
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Figure 3.19: FD of Pressure in each gender from T1 to T3

compared to adults. The main effect of Trimester yielded an effect size of 0.224

indicating that 22.4% of the variance in the 50% PF metric was explained by

Trimester (F(2, 323)=46.645, p=.000). While, The main effect of Trimester

yielded an effect size of 0.232 indicating that 23.2% of the variance in the 90%

PF metric was explained by Trimester (F(2, 323)=48.914, p=.000).

Region: Mid region showed significantly larger cut off frequency for 90%

power compared against Fore and Hind regions. The main effect of Region

yielded an effect size of 0.063 indicating that 6.3% of the variance in the 90%

PF metric was explained by Region (F(2, 323)=10.792, p=.000).

– CoPx 50% and 90% Power Frequency: In the 50% Power Frequency

metric the Levine’s test showed that the variances of the groups were not

equal with (F(35, 294)= 3.382, p=.000) for 50% PF and (F(35, 294)=

2.916, p=.000) for 90% PF. The analysis showed significantly different

results in Trimester for 50% PF at p<.001, and Trimester and Region

for 90% PF, both at p<.001.See Figure (3.22)

Trimester: There was a shift to the lower frequencies (left) in the 50% and 90%

PF, when trimesters progressed from T1 to T3. The main effect of Trimester

yielded an effect size of 0.245 indicating that 24.5% of the variance in the 50%
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Figure 3.20: FD of CoPx in each region from T1 to T3

PF metric was explained by Trimester (F(2, 323)=52.378, p=.000). While,

the main effect of Trimester yielded an effect size of 0.187 indicating that

18.7% of the variance in the 90% PF metric was explained by Trimester (F(2,

323)=37.270, p=.000).

Region: Front region showed significantly larger cut off frequency for 90%

power compared against Mid and Hind regions. The main effect of Region

yielded an effect size of 0.076 indicating that 7.6 % of the variance in the 90%

PF metric was explained by Region (F(2, 323)=13.307, p=.000).

Table 3.5 shows the Mean and Standard deviations of all the significantly different

pressure metrics, for all three trimesters.

Table3.6 shows the mean and standard deviation values of the CoPx analysis in time

and frequency domain metrics.
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(a) 50%&90%PF

(b) 90%PF

Figure 3.21: a) 50% and 90% PF of Pressure signal in each trimester and b) 90% PF

of Pressure signal in each region, from T1 to T3
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(a) 50%&90%PF

(b) 90%PF

Figure 3.22: a) 50% and 90% PF of CoPx signal in each trimester and b) 90% PF of

CoPx signal in each region from T1 to T3
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Table 3.6: Mean and Standard deviations of all the significantly different CoPx met-

rics

CoPx

IV

DV
CFREQ FD 50%PF 90%PF

Trimester

T1

T2

T3

2.07 ± 0.30b

2.00 ± 0.44c

1.80± 0.27

0.67 ± 0.05

0.73 ± 0.45d

0.74±0.04e,f

0.62± 0.36a,b

0.36 ± 0.18c

0.29± 0.13

2.11±0.95a,b

1.47 ± 0.82c

1.16± 0.63

Region

F

M

H

2.10±0.40a,b

1.90 ± 0.31c

1.80± 0.33

0.71 ± 0.05

0.72 ± 0.05d

0.73±0.05e,f

1.78±1.08a,b

1.45 ± 0.75c

1.25± 0.61

Gender
M

F

1.90 ± 0.25

1.96± 0.41b

a. T1>T2, b. T1>T3, c. T2>T3, d. T2>T1, e. T3>T1, f. T3>T2

a. F>M, b. F>H, c. M>H, d. M>F, e. H>F, f. H>M

a. M>F, b. F>M

3.2.3.3 Adult data comparison

In this section we specifically compare and discuss the Multi-factor ANOVA results

and plots of infants with an exemplar adult data in both pressure and CoPx signals for

each of the metrics.
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Figure 3.23: Mean of pressure of infants Vs Adults in each region of the foot

Figure 3.24: Variance of Pressure of infants Vs Adults in each region of the foot
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Figure 3.25: CFREQ of Pressure of infants Vs Adults in each region of the foot

Figure 3.26: CFREQM of Pressure of infants Vs Adults in each region of the foot
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Figure 3.27: CFREQ of CoPx of infants Vs Adults in each region of the foot

Figure 3.28: CFREQM of CoPx of infants Vs Adults in each region of the foot
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Figure 3.29: FD of Pressure of infants Vs Adults in each region of the foot

Figure 3.30: FD of CoPx of infants Vs Adults in each region of the foot
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Figure 3.31: 50% PF of Pressure of infants Vs Adults in each region of the foot

Figure 3.32: 90% PF of Pressure of infants Vs Adults in each region of the foot
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Figure 3.33: 50% PF of CoPx of infants Vs Adults in each region of the foot

Figure 3.34: 90% PF of CoPx of infants Vs Adults in each region of the foot
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CHAPTER 4

NONLINEAR DYNAMICS

4.1 Introduction to nonlinear dynamics

4.1.1 Types of Systems:

There are three types of systems:

• Deterministic system: Deterministic system is a system that is not random.

The cause and effect are linked in this type of the system and the current state

determines the future state.

• Dynamic System: Is a system that evolves by time.

• Nonlinear system: Is a system where the relationships between the variables

that matter, are not linear.

4.1.2 Types of Time Systems:

4.1.2.1 Discrete time system:

In this system time proceeds in clicks. “Map” is a discrete time system and time

makes no sense in between iterates. Modeling tool for this time system is difference

equation.

Xn+1 = f(xn) (4.1)
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where n is time, x is the state of the system, and f is the map, which takes the current

state (xn), and moves it one time click forward and gives (xn+1).

In the notation Xn+1 = f(xn), is a polynomial mapping, example of how complex,

chaotic behaviour can arise from very simple nonlinear dynamical equations [49].

The reason to study maps is that their dynamics are representative, which is a good

example of what can happen in nonlinear dynamical systems, but the math is a lot

easier. A good way to understand the nonlinear dynamics better, is to start the ideas

and examples in the context of maps and then circling back around through those

ideas in the context of flows.

4.1.2.2 Continuous time system:

In this type of system, time proceeds smoothly, and the space and time are continuous.

“Flow” is a continuous time system. Modeling tool for this system is differential

equation.

A flow is something like pendulum, dynamics that operate continuously in time and

space.

State Space and State Variables: The state space of a dynamical system is the set

of all possible states of the system. Each coordinate is a state variable, and the values

of all the state variables completely describe the dynamics of the system. In other

words, each point in the state space corresponds to a different state of the dynam-

ical system. A state variable is one of the variables used to describe the state of a

dynamical system. Each state variable corresponds to one of the coordinates of the

underlying state space.

4.1.3 Nonlinear Time Series Analysis :

When we have time series data from a dynamical system, the measurement may be a

point of the state variables, but that’s not always possible. In a complicated dynamical

system, we may not know what all the state variables are, and even if we did know
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what they were, it might be hard to measure them. And even if we can measure them,

we may not be able to do that without affecting the dynamics of the system that we

are studying. The theory and algorithms that is mostly used is based on an assump-

tion that we know all the state variables, what they are, and what their values are. But

reality is very different. We generally have a measurement of one quantity that is ac-

quired from some function of some number of the state variables.However the act of

doing that single measurement projects the state space down onto a single axis. If we

want to study the full version of those dynamics we have to undo that projection, in

other words we need to expand that squashed flat data back into its original form [50],

(Figure 4.1). One way of doing this is by computing derivatives from the data, how-

ever there are two major problems with that approach first it magnifies noise, another

major problem is that it’s not often possible to know what all the state variables of the

system are and it’s extremely rare that we can measure all of them and the act of doing

all those measurements might actually change the system dynamics. Often we don’t

even know how many dimensions the system has. Therefore, we need to estimate

the dynamical order of the system in order to expand it sufficiently enough for a real

appearance in the space; e.g., with a technique called delay coordinate embedding.

Figure 4.1: Expanding the squashed flat data of a Lorenz system back into its original

form [1]
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4.1.3.1 Delay-Coordinate Embedding:

The basic idea of this method is that we plot the data against delayed versions of

itself and this new space is called reconstruction space and it has as many axes as

we choose. The so called phase points in that reconstructed space from the data

form a vector of delayed coordinates. The number of axes represents the number

of dimensions that we are embedding the data in. In order to do the reconstruction

correctly, we need to choose m, the dimension and τ , the time delay, properly.

So, for choosing a proper τ and m we need a τ greater than zero in theory, and an m

which is big enough so that the crossings are gone from the standpoint of the data and

the computations that we are using. We also need to avoid choosing a delay that’s a

multiple of a period for the reason that all the points in reconstruction space will be

on the main diagonal (redundancy).

4.2 Nonlinear Noise and Dynamics in Human Posture

Human posture has two major branches that can be investigated individually:

1. Physiological

2. Mathematical Modeling (Dynamics and Control)

For the physiological part, there are several guidelines such as: Neuromuscular skele-

tal system, Metabolic system (energy), Neuro-endocrine system, etc.

We use the neuromuscular skeletal section to investigate the mathematical model-

ing branch of the posture and assume the rest of the physiological sections as given.

However, for creating a space in the given instant (for establishing a spatiotempo-

ral evolution for a given signal), we need a space variable which may be a random

variable, xt, or a deterministic one, x(t) that does not contain the history of the parti-

cle. The mathematical modeling branch of the investigation is actually the theoretical

and methodological part of the study. Therefore, for explaining the developmental

aspects of the posture and dynamics, we use the information from the physiological

guidelines. As a whole, we assume that there is a randomness, and we want to in-
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vestigate on the dynamics including linear and nonlinear characteristics. On the other

hand there is noise in the signal which needs to be investigated along with the dynam-

ics.Since, motor learning may be affected by existence of the noise, the main question

here is how much of a signal is containing noise and how much of it is dynamics. For

this purpose, we suggest to divide the signal analysis into two main sections of noise

and dynamics studies.

Moreover, we already assume that the collected postural signal has been assessed by

considering all the anthropometric measurements that is needed and effective in the

results.

4.3 Reconstruction of Dynamic at Phase Space by Introducing Time Delay Vec-

tors:

4.3.1 Statistical Mechanics and Information of Human Postural Dynamics

To investigate the dynamics of human posture in a more detailed and reliable way,

we need to expand postural dynamics at m-dimensional phase space [51]. If we

have a CoPx signal of a quiet stance, in order to estimate the proper time delay (τ )

and dimension (m), we use the reconstruction method, which is called the time delay

method [6]. In this method the dimension of the phase space is not known, so we need

to reconstruct the dynamics from the observable state in m-dimensional state space

by selecting a fixed time delay, τ [52]. We assume that CoPx(N) is an observable

dynamical-state of the complex postural control system, where N is the total number

of data collected.

CoPx(i) = X(1), X(2), ..., X(N) (4.2)

Where i = 1, 2, ...N , and N is the total number of data collected.

In this method, the new independent variables will be x(t), x(t + τ), x(t + 2τ),. . . ,

being obtained from a single time series, x(t). (Xi) is the the amplitudes of the data

samples in the original time series of measurements, and have been collected by using
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a fixed time interval (∆t). Equation (4.3),

X(i) = X1, X2, ..., XN (4.3)

where N is the total number of the data points in the time signal. Then we select a

fixed time delay τ and write from the previous eq. (4.3) the sequence of base functions

of vectors which is called phase space in the m-dimensional state space.(4.4):

X1 = x1, x2, ..., xN−(m−1)τ

X2 = x1+τ , x2+τ , ..., xN−(m−1)τ+τ

...

Xm = x1+(m−1)τ , x2+(m−1)τ , ..., xN

(4.4)

The coordinates of the phase space, ξi where i = 1, 2, . . . ,m, are defined as phase

points or delay vector, with a length of k, (equation 4.5); based on the parsimony

principle k = N − (m− 1)τ .

ξ1 = x1, x1+τ , ..., x1+(m−1)τ

ξ2 = x2, x2+τ , ..., x2+(m−1)τ

...

ξk = xN−(m−1)τ , xN−(m−1)τ+τ , ..., xN

(4.5)

For being sure that the trajectories have no intersect within, we need to find the proper

dimension which is high enough for the reconstruction. based on the dimension m

and the time delay τ , different coordinate transformation and structures in the recon-

struction embedding spaces will be obtained. As an example we take a time series

of numbers from 1 to 10, and we want to apply some rules ,with a given N=10, for

estimating the dimension m and time delay τ . And since k = N − (m− 1)τ , then we

will have:

X = 1 2 3 4 5 6 7 8 9 10 (4.6)
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If we assume m = 2, for N = 10 we will have:

k = 10− (2− 1)τ (4.7)

And therefore, we will have:

k + τ = 10 (4.8)

The possible answers for k and τ from the above equation, will be:

Table 4.1: Solutions of τ and k, for m = 2,

τ X1 X2 k

1 [1,9] [2,10] 9

2 [1,8] [3,10] 8

3 [1,7] [4,10] 7

4 [1,6] [5,10] 6

5 [1,5] [6,10] 5

Therefore if we want to divide the previous signal into two (m = 2), and since all the

data points should be included in the estimation, maximum τ needs to be 5, but the

solution is not unique and every τ ≤ 5 can be the answer, while minimum k is also 5,

and every 5 ≤ k ≤ 9 can be the answer.

Based on the method we used to estimate the maximum τ and minimum k, we reached

to three rules:

1. All data should be used in the phase space (parsimony principle)

2. All signals must have the same length (because each element of these signals will

be the coordinates of the phase space)

3. The general rule for the given N will lead us to estimatem and τ (eq.4.9,4.10), such
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that for non-overlap signals,for each estimation, we will have k many phase points:

kmin(m, τmax) =
N

m
(4.9)

And since N = kmin + τmax:

τmax =
N

m
(4.10)

Where kmin and τmax are dependent to m, and will be satisfied as long as the the

signals are not overlapping with each other, and N
m

is a real number to satisfy the

parsimony principle. Moreover, if τ ≥ τmax, there will be a gap between signals, in

another words, whenever m× τ > N , gap appears between signals.

On the other hand, if there is an overlap on the signals, although it can increase the

phase points, it will affect the result of τcritical.Therefore by increasing τ , we need

to check the Independence, otherwise it causes redundancy (Figure 4.2). Moreover,

τcritical is not necessarily equal to τmax, and it depends on the number of data points

and overlap signals.

Figure 4.2: Reconstruction error is minimum at the optimum time-delay (τcritical) [2]

On the other hand, τcritical catches the periodicity and saturates if there is any period-

icity, and if not, we don’t have any τcritical. Hence, based on figure 4.2, since we don’t
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know the value of τcritical, we need a method and a metric that help us finding that,

and this method is known as average displacement method [2].As we know figure 4.2

is a graphic for a given m, in the left side of the figure, for τ = 0, (when we plot the

whole signal with respect to itself and it gives us a line),there is a redundancy in the

system and as we move to the right side of the figure and increase the value of τ , at

first maximum overlapping occurs between for example two signals for m = 2, then

by increasing the value of τ overlapping decrease and at some point it reaches to the

non-overlap point and somewhere between the maximum overlap and non-overlap,

we can find the τcritical. And at the right side of the figure, we reach to the irrele-

vancy. An important side note here is that, if a signal is periodic, it never goes to

irrelevancy. It either becomes independent or redundant.

4.3.2 Average Displacement Method

The method of average displacement which can also be called as m-dimensional em-

bedded phase space, is a function of τ and it is a way to estimate whether the coor-

dinates of phase space (ξ) are far enough with respect to each other. It helps to find

out how much delay and how much independency we have, in another words,we will

estimate the optimum independency regarding the distance between the phase points

(is the attractor expanded enough?).

Based on the coordinates of the phase space of the reconstructed attractor at m-dim

phase space, average displacement S(τ ) is defined as:

Sτ =
1

N − (m− 1)τ

N−(m−1)τ∑
k=1

√√√√m−1∑
i=1

(xk+iτ − xk)2 (4.11)

Where, xk+iτ ; i = 0, . . . , (m− 1)τ are the coordinates of the kth phase point (ξk) of

the reconstructed attractor at the m-dim phase space [2]. In another words, we have

k-many phase points in m-dim phase space, and the physical dimension of S(τ ) is

meter [m].

If we have a sin function and plot the graph of S(τ) with respect to τ , we will have
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the following:

X(t) = Asin(ωt) (4.12)

Where, T = 100sec, fs = 50Hz, fper = 0.1Hz, and variances of the two-signals

match. By embedding the dynamics in m-dimensional phase space, our plot will be

like figure 4.3, for m=5:

Figure 4.3: S average displacement of a sine function with respect to its delay in m=5

dimensions

In figure 4.3, by looking at the speed of the error,(points when the slope of S(τ) is

zero), we can see that by increasing the m, the zero crossing points change. This

means that every time the curve reaches its max point (the zero crossing point for

speed), the coordinates separate from each other. And if the pattern gets repeated

after passing the max point, this means that our signal is periodic. In this example,

for sine signal, the max point in m = 2, is the half cycle of the unit circle, and after

that it repeats the pattern because it is a periodic signal. Moreover, by increasing the

m, the slope of the figures of S(τ) increases. Because, based on equation (4.11),

since it is a dimension metric, the increase of the dimension brings more coordinates

to the plot and it causes an increase in the slope of the plot. This happen for smaller

τ values, while as τ increases as well, the converging regions increase in bigger τ

values,too.

The method of Average displacement is being used for error estimation, and for con-

trolling the error, we use three terms to describe the error and estimate it, which are:
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redundancy (dependency), independency, and irrelevancy while it is not easy to differ-

entiate in-between irrelevancy versus independency. We use these terms to estimate

a minimum error.

On the other hand, we can also call these m-dim embedding reconstruction as m-

many velocity equations if the independency of the coordinate axes is guaranteed

(equation 4.13 ):

Ẋm×1 = fm×1(xm×1) (4.13)

Such that in the above equation we are estimating the f(x), which is a flow and since

this function is unknown, we try to estimate it for different τ values.

Another question may come up is that, why all the S(τ) curves in figure 4.3 start from

zero?

Because for any given m, at the beginning of the signal, τ is equal to zero, which

means that the signal is comparing to itself and redundancy is maximum and error is

zero because all the coordinates overlap. Therefore the inner summation in equation

(4.11) goes to zero. Therefore, if the coordinates overlap, it creates a line and S(τ)

curves cross the zero point. Then, the second the coordinate start to separate from

each other and expand, the curve reaches its maximum value when it repeated its

pattern, and it goes to zero again when τ = 2π.

Now if we want to show the behaviour of a white noise in the plot of S(τ) with respect

to τ , we will have (figure 4.4):

On the other hand, from a statistical point of view, the inner summation (im) in the

equation 4.11 is calculating the x vectors with respect to a reference. For example,

the first vector is the result of the difference between x1 and x1+τ . The next vector is

the result of the difference between x1 and x1+2τ , and so on, until m− 1, such that:

im =
√

(x1+τ − x1)2 + (x1+2τ − x1)2 + ...+ (x1+(m−1)τ − x1)2 (4.14)

Then the above equation will calculated for X2, X3, until the kth phase point which
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Figure 4.4: S average displacement of a white noise with respect to its delay in m=5

dimensions

will be XN−(m−1)τ . And we know that im is not a vector space; rather is an error

optimisation, like a regression analysis. Now if we continue this method and estimate

the trajectories and phase points, it will lead us to the stabilogram diffusion method

[3] and not the average displacement method. In another words we will calculate the

stabilogram diffusion in an established attractor which is not the point of this section

of the study. And actually, in this section, there isn’t any established attractor and the

main question here is how to establish an attractor in a correct embedding dynamics.

However, by following the goal of the this section,if we find the τcritical and find the

attractor from the average displacement method, for a given m, then we can continue

with stabilogram diffusion method and do the noise analysis. The important note here

is that, saturation in a specific dimension and finding the related results doesn’t give us

any information about it noise level, and to investigate the noise of a signal, we need

to do the next section "Stochastic Process of Nonlinear Analysis" for stabilogram

diffusion analysis.

Therefore, the general definition of the average displacement method can be followed

through figure 4.6, for m=2, where we choose one vector as reference and investigate

its difference from the next vectors, which is somehow similar to the linear regression

method that looks into the differences from the expected values.

As a first step, our supposition is that if τ = τcritical, all the vectors’ differences are

happen to be on the reference line or the main diagonal (the angle between the x axis
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and diagonal is 45 degrees) and it means that the vectors are fully time correlated or

linearly dependent. In another words, we can interpret this supposition in two ways:

1. Signal function: If we slide on a signal up to τ , and the signal doesn’t change,

it will remain on the reference line and this will happen if and only if the signal is

periodic,(figure 4.5).

Figure 4.5: if τ = 0 or τ = T in m=2 dimensions, where T is the period of the

periodic function. Note: the order of the vectors on X1 and X2 are shuffled and

sorted from smallest to largest values.

2. Algebraically speaking: If we write each vector component as a matrix, we will

have the following matrices:

v1 =

 x1

x1 + τ

 v2 =

 x3

x3 + τ

 ... vN−(m−1)τ =

xN−(m−1)τ

xN−(m−2)τ

 (4.15)

Now if:

c1v1 + c2v2 + ...+ cN−(m−1)τvN−(m−1)τ = 0 (4.16)

Where, v1, v2, ..., vN−(m−1)τ are the delay vectors and are linearly dependent unless

ci values are zero for all i.
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Thus, from these two point of views, if we have a periodic time function f(t), we will

have a relation between linear dependency (Algebra) and time correlation (Signal).

However, the first step was only a supposition, and for finding the error in reality, we

will continue with step two: Here we look into the amount of expansion from the

main diagonal .

Figure 4.6: phase points error estimation in m=2 dimensions. Note: the order of the

vectors on X1 are shuffled and sorted from smallest to largest values, and on X2 is

sorted based on the τ values.

Figure 4.6 shows the estimation of error at each phase points (here ξ1) by calculating

the difference between the coordinates of the vectors (here (x1+τ − x1)). Based on

the figure 4.6, and from the similarity between 4OAB and 4BCD, we can write
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the following equations:

OA

OB
=

DC

DB

x1√
2x1

2
=

DC

x1+τ − x1

x1√
2x1

=
DC

x1+τ − x1

x1+τ − x1 =
√

2DC

(x1+τ − x1)2 = 2(DC)2

(4.17)

Thus, by assuming given τ , and m, from equation 4.17, we can say that this expres-

sion is an statistical measure, and DC is not a vector space and is an error, which

by expanding the equation to the main equation 4.11, it is equal to twice the average

of how much the attractor is expanded from the main diagonal in m-dim space. In

another words, S-Average Displacement is the average of K-many distances from the

main diagonal at m-dim phase space.

Now, in this definition if the vectors happen to overlap (redundant), it means that

during the estimation of m, we have not used the correct base vectors which has

been created by using τ . As we know, for estimating the m, we need base vectors,

and the base vectors are being created by each jump equal to τ , so that these base

vectors introduce the m dimension through the given τ , which leads us to place k-

many phase points correctly without any overlapping. And this is the result that Sτ

gives us and help us to estimate the best amount of expansion from the main diagonal.

So, our purpose here is to search formmany independent base vectors, to be extracted

from observations spanning through redundancy to irrelevancy. Moreover, the angles

between these vectors are also important for interpretation of the postural behaviour

point of view and need to be calculated.
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4.3.3 Stochastic Process of Nonlinear Analysis

The second section of studying a nonlinear system is investigating the characteristics

of the noise embedded in the dynamical system. Based on the previous study on noise

structure [3], we can calculate how much delay and how much quadratic variations

(variance) have been changed with respect to ∆t (figure 4.7). This figure shows the

COP trajectories in a two dimensional random walks for given vector space (x, y) .

The displacement analysis was carried out by computing the square of the displace-

ments between all pairs of points separated in time by a specified time interval ∆t [3].

Variance is linearly related to t, which is also related to the previous section, such that

by increasing the τ , variance will be increased. Here,based on figure 4.7 and equation

4.18, we will be looking for the structure of the noise in the system.

Therefore,the previous section (Average Displacement Method) was the study of the

determinism in the system and was investigating the expansion of the coordinates and

attractor, while this section is the study of the noise in the same system and it follows

how the variance increases in time.

Figure 4.7: stabilogram diffusion [3]

∆~ri = ~rt+i∆t − ~rt (4.18)
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Where, i∆t = τ ; i = 1, ...N and is also equal to one over the sampling frequency

( 1
f

).

Thus, for a given m, quadratic variation is a function of τ [3].

As an example for CoP, we can write the square of the magnitude of ∆r, ((∆r)2) as

following:

~r1(t) = (x1(t), y1(t)) = x1(t)̂i+ y1(t)ĵ (4.19)

~r2(t+ τ) = (x2(t+ τ), y2(t+ τ)) = x2(t+ τ )̂i+ y2(t+ τ)ĵ (4.20)

∆~r = (x2 − x1)̂i+ (y2 − y1)ĵ (4.21)

√
(∆r)2 =

√
(x2 − x1)2 + (y2 − y1)2 (4.22)

Where
√

(∆r)2 is euclidean, given that these two vectors are independent. Moreover,√
(∆r)2 is equivalent to

√
(∆ξ)2, with this difference that ∆r is given since we know

the m, while we need to find the ∆ξ through the estimated m.

Stochastic process is a study of ensemble signals, and it actually creates a particle’s

random walk (figure 4.8).

As we mentioned before, this method is a 2-D random walk, but it is not necessarily

needed to be a 2-D curve, it can be an m-D curve as well. another important note here

is that this curve is time explicit.

Since stabilogram diffusion is not a limit problem,and its more like rolling a dice in

each decision making, it is not a function of time and it can be expressed like the

following stochastic equation which is the equation of noise for 1-D random walk

[53]:

∆x =
√

2D(∆t)
1
2N(0, 1) (4.23)
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Figure 4.8: Random Walks [4]

Where D is the diffusion coefficient and the physical dimension of it will be the

following:

Since physical dimension of 2Dt is [m
2

sec
× sec = m2], we can write the first segments

as:

m2

sec
=

m

sec
× 1

1
m

(4.24)

Where m
sec

is velocity.Also, the right side of the equation can be written as:

1

sec
×m× 1

1
m

(4.25)

Where 1
sec

is frequency.

The second statistical moment will be:

< ∆x.∆x > = 2D∆t < N(0, 1)N(0, 1) > (4.26)

Where < ∆x.∆x > with physical dimension of [m2] is a function of ∆t. When it

is summed over i∆t, it creates statistical power and it turns out to be the variance as
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function of t.

Equation 4.23 shows that by passing t amount of time, the value of the variance will

be 2Dt with physical dimension of [m
2

sec
× sec = m2], so by passing ∆t amount of

time, there will be 2D∆t variance, and from expression <N(0,1)> in equation 4.23

we know that, the mean is 0 and variance is 1, therefore, 2D∆t is the variance.

The expression < N(0, 1)N(0, 1) > in equation (4.26) means that we take the result

of rolling a dice once, and multiple it by itself.

Moreover, to estimate the next x, based from the previous equation (4.18), we can

write the iteration rule of the noise equation as equation of motion of the spatiotem-

poral evolution of a random variable as follow:

xt+∆t − xt = ∆x (4.27)

Thus, we will have:

xt+∆t = xt + ∆x (4.28)

Where, both xt and ∆x are random variables and thus this is an statistical addition of

previous step in order to find the next step.

Since this section is based on rolling a dice, next we will come to the statistical mo-

ments, and we know that for <N(0,1)>, mean is zero (µ = 0) and variance is one,

(σ2 = 1), and the problem is both spatial and temporal. The first statistical moment

is < x > for given t, and the second statistical moment will be < ∆x.∆x >.

From figure 4.8, which is a graphical expression of ensemble signals, we can show

their Gaussian properties. We know that xt is a random variable and since this method

is not Newtonian, it is actually fate of a single particle, and since here we have en-

semble of xt (time series), so quadratic variation is defined for ensemble of particles.

From equation (4.26) we know that expression < ∆x.∆x > is variance or the second

moment (σ2), which may also be multivariate; e.g., 2-D random walk, however in the

expression ∆x from equation (4.23) is univariate.
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Figure 4.9: Illustration of multiple random walk paths and their Gaussian properties,

in which the variance of the histogram formed by the multiple path values increases

[5]

Now, based on equation 4.23, which is the basic equation of the stochastic dynamics

that means rolling a dice each time to go from i to i+ ∆t, for XN we can write:

XN =
N∑
i=1

(∆x)i (4.29)

Where xN is the x in the Nth step, since all the ∆x are i.i.d (independent identical

distribution) and independent form each other. From figure 4.8, we have one random

variable (∆x), N many step for each walker(signal), and also we have n many walker

and if we want to keep the pattern of ensemble signals bounded, meaning that while

they expand towards positive and negative direction of the y axis, we need to call

them back to maintain in a bounded standard deviation region, which is the case for

human postural sway dynamics as we never fall while swaying! Now, we can rewrite

the equation 4.23 as follow:

∆x = xi+1 − xi =
√

2D(∆t)
1
2N(0, 1) (4.30)

And, if we have two random variables x1 and x2, such that:

x1 , N(µ1, σ1
2), x2 , N(µ2, σ2

2) (4.31)
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Where, µ is the mean and σ is the variance. So, we can write:

x1 + x2 = N(µ1 + µ2, σ1
2 + σ2

2) (4.32)

where, means and variances of x1 and x2 are added which is the characteristic of the

normal distribution.Now, since with this method we cant call back the signal, we need

to create a velocity by which it is proportional to the current position of the signal. So,

the physical dimension of the velocity is m/s, and we know that physical dimension

of the
√

2D in the equation 4.30 is
√

m2

s
and the physical dimension of the (∆t)

1
2 is

√
s, therefore, the physical dimension of the ∆x will be [m]. Thus, in order to add a

velocity to equation 4.30, we need to write as following:

∆x = xi+1 − xi =
√

2D(∆t)
1
2N(0, 1) + V (xi)∆t (4.33)

Where, V (xi) can be written as λxi, and λ = f(frequency), the physical dimension

of λ is 1
s
, and the physical dimension of xi is m, then by multiplying the V (xi) by

∆t, it will be 1
s
.m.s = m. So, the equation will be like:

∆x = xi+1 − xi =
√

2D(∆t)
1
2N(0, 1) + λxi∆t (4.34)

Here, we take a limit of ∆t to zero (∆t→ 0), thus we will have dxi:

dxi =
√

2DdBt + λxidt (4.35)

Where, dBt, which is also known as the Wiener process (dWt) is obtained from (∆t)
1
2

expression multiplied byN(0, 1). We also know that cumulative sum of equation 4.35

will gives us the Brownian motion (see equation 4.29). Furthermore, time derivative

of equation 4.35 is the velocity equation where dBt

dt
= wt, which is known as the

white noise. Therefore, the equation 4.35 will be like:

ẋi =
√

2Dwt + λxi (4.36)
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Moreover, if we want to write the equation(4.29) for the X afterN∆t amount of time,

we can write as follow:

XN∆t
d
=

N∑
i=1

(∆x)i

=
N∑
i=1

√
2D(∆t)

1
2 < N(0, 1) >

=
√

2D(∆t)
1
2

N∑
i=1

< N(0, 1) >

=
√

2D(∆t)
1
2N(0, N)

= N(0, 2DN∆t)

(4.37)

Where, d on the equal sign of the first row means distribution (fate of many particles).

The summation of the mean and variance will leads us to XN∆t, because means are

zero, so their summation will also be zero, and the summation of N many variance

will be N. Then, in the next step base on the rule of the normal distribution, which is:

C.N(µ1, σ1
2) = N(µ1.C, σ1

2.C2) (4.38)

the constant section of the equation which is (
√

2D(∆t)
1
2 )2 will multiplied with the

variance and we will have 2DN∆t.
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Next, for t = N.∆t, we can write:

Xt = XN∆t

= N(0, 2Dt)

=
√

2DN(0, t)

= σN(0, t)

, σ.Bt

(4.39)

Now, by taking derivative of two sides of the above equation with respect to t, we can

write:
dxt = σ.dBt − λxtdt

ẋt = −λxt + σ
dBt

dt

ẋt + λxt = σwt

= Ft

(4.40)

Where Ft is the forcing term which is equal to white noise.

In a comparison between the two methods; i.e., dynamics versus noise, we can tell

that in the method to reveal the noise characteristics from an observation, for a given

m, we can find an answer for the equation (4.18) by subtracting the coordinates of

the corresponding points. While in the reconstruction dynamics method, we esti-

mate the dimension of the dynamics, m in order to embed it (the phase points de-

scribed through time delay method, see equation 4.5) into the vector (phase) space

constructed from independent (orthogonal) estimated signals (see equation 4.4). In

summary, in the noise characteristic method, given the vector space, we estimate

for the quadratic variation in the observation(s) (∆r)2. But, if vector (phase) space is

unknown, these two methods will be the identical. Thus, the one and important differ-

ence between these two methods is whether there exists a given vector (phase) space

or not. And based on the equation (4.4) each Xm is the base functions of the vector
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space and must be independent. Please note that equation (4.18) is a special case of

more general difference equation (4.11) where deterministic part of the dynamics is

searched for, if ever exists.

4.3.4 Information Theory and Dimension Analysis

4.3.4.1 Information Theory

• Binary Events

The definition of information can be written as [6]:

I , K lnR (4.41)

Where, K = log2 e. So:

I = log2 e lnR

= log2R

2I = R
(4.42)

Where, 2I = R is a random walk since this is a binary event with logarithmic

base of 2 (points (phase) at the event). "I" is the number of decision making

which is known as the information. R is the realization factor (at the reservoir,

possible combinations of the points) and can be written as:

R(N, n) =
N !

n!(N − n)!
(4.43)

Where, N is the number of decision makings (freedom), and n is the number of

outcomes (phase points).
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As an example, for a fair binary process we can write the pascal triangle, N=4:

nL + nR = N

2N = R

24 = 16

= c(
4

0
) + c(

4

1
) + c(

4

2
) + c(

4

3
) + c(

4

4
)

2N =
N∑
n=0

N !

n!(N − n)!)

(4.44)

• Probable Events

As an example of probable events, lets assume the pascal triangle and do the

calculations:

P (N, n) =
N !

n!(N − n)!)
pnpN−n (4.45)

Where,
∑2

i=1 pi = 1. Expression pi is the probability of a binary event symbols

p and q, (p1 = p, and p2 = q), and express the fairness and missing information,

while P is the outcome measurement. For the pascal triangle probability event

we can write the equation 4.45, as follow:

P (4, 0) =
4!

0!(4− 0)!)
(
1

2
)0(

1

2
)4−0

=
1

16

(4.46)

Based on the figure (4.10), p and q are the probabilities of a binary event, where

p + q = 1. For p = q = 1
2
, nothing is known, and there is a maximum

exploration per ipsum, and in an other word, entropy (the missing information)

is maximum. While for p = 1 and q = 0, or p = 0 and q = 1 everything is

known, and there is a maximum exploitation and minimum entropy. Thus, the

more the missing in information, the more the entropy is.
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Figure 4.10: Normalized information versus missing information (Shannon Entropy)

plot

• Shannon Information Theory

For a binary process via the Stirling’s approximation we can rewrite the equa-

tion 4.41, by substituting R, as the following:

I , K ln
N !

n!(N − n)!
(4.47)

Since the information increases with the number N of the realisations and thus

with the number of decisions, the mean value is of interest. Therefore, the

information per decision is [6]:

Ī(p) =
I

N
(4.48)

Using the Stirling approximation, leads us to the following result (See Ap-

pendix B):

Ī(p) = −K
k∑
i=1

pi ln pi (4.49)

Where K is the constant for logarithmic base conversion, and Ī(p) is positive

definite.
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Now, for the probability of a binary event Ī(p) can be written as:

Ī(p) = −K
2∑
i=1

pi ln pi (4.50)

Lets assume that pi = 1
2
, (uniform):

Ī(p) = − log2 e(2 ·
1

2
ln

1

2
)

= − log2 e(ln 1− ln 2)

= − log2 e(− loge 2)

Ī(p) = 1

(4.51)

Remark that the pi in equation 4.49 is no longer has to be equal to 1
2
, and it can

be both fair an unfair event. So, missing information is actually measure of the

unfairness. Moreover, this equation (4.49) can be used for any logarithmic base

(see figure 4.10).

4.3.4.2 Dimension Analysis

In this section the q-dim dimension analysis will be applied. So, the information

equation here, is a function of q [54, 6].

Īq(ε) ,
1

1− q
ln

W (ε)∑
k=1

pk
q (4.52)

Where Ī(q) is the mean information, and q is not the same dimension that we inves-

tigated in the average displacement method (m-dim). We know that in the average

displacement method, for embedding the attractor, we used m-dim for estimating the

dimension. while in this method, q is the order of relation in between the phase points.

Note that the relation between the phase points can be pseudo neighborhood relation-

ships, if the obtained phase points and previous steps of estimating the m and τ are

not correct.
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Based on the definition of generalized dimension [55, 56, 54] (Rényi dimension). To

determine the dimension of the attractor, we consider a uniform subdivision of the

phase space into hyper cubes of edge length ε. Let W (ε) be the number of boxes

which contain measuring points and assume that, of N measurements, nk measuring

points lie in the k-th hypercube. The relative frequency of finding a point in the k-th

box depends on the measuring accuracy ε, i.e. on the partitioning of the phase space,

and is expressed by pk = nk

N
[6]. The definition of the dimension is given in the

following equation:

Dq = lim
ε→0

Iq(ε)

ln 1
ε

(4.53)

Where, ε is the measuring accuracy or spatial tolerance metric.[6]

In this method, for estimating the dimensions, we scan a hyper-spherical (m-dim)

space with m-many radii (r), around each phase point, and count the number of phase

points within the sphere, which will be the probability around that phase point (pk(r))

which is the function of r, and we repeat this method k-many times (for each phase

point). Moreover, we can say that (pk(r)) is proportional with r, and we can solve it

to find the proportionality constant, D.

pk(r) ∝ r(D)

ln pk(r) ∝ D ln r

ln pk(r)

ln r
∝ D

(4.54)

So, for any r, we estimate the probability of the phase points to be in the vicinity of

a particular phase point (neighborhood relationships around each phase point) in the

embedded dynamics to m-dim phase space, and we expect an increase in the number

of neighborhood relationships as the radius r increases.

92



Now lets assume that q=0,1,2 and run the equation 4.52 for q=0:

Ī0(ε) = ln

W (ε)∑
k=1

1

Ī0(ε) = 1 lnW (ε)

(4.55)

D0 = lim
ε→0

Ī0(ε)

ln 1
ε

= lim
ε→0

lnW (ε)

ln 1
ε

(4.56)

Which is known as the box counting. Next we run the equation 4.52 for q=1:

Ī1(ε) =
1

1− q
ln

W (ε)∑
k=1

pk
q=1 (4.57)

Which results in the Shannon augmented entropy measure, and needs to be solved

through the L’Hospital’s rule:

Īq(ε) =

d
dq

ln
∑W (ε)

k=1 pk
q

d
dq

(1− q)

= − d

dq
(ln

W (ε)∑
k=1

pk
q)

= − d

dq
ln(p1

q + p2
q + ...+ pk

q)

(4.58)

Where here, k is the logarithmic base and is unknown, and the values of q determines

the probability of the number of neighbors falling next to each other. We can assume

the (p1
q + p2

q + ... + pk
q) section as f(q), where for q=1, p1, p2, ..., pk are constant.
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So, the right side of the above equation can be written as:

d

dq
ln(f(q)) = f ′(q)

1

f(q)

= f ′(q)
1∑W (ε)

k=1 pkq=1

(4.59)

So, for q=1, the total pk = 1 over k. Now we solve the f ′(q) part:

f ′(q) =
d

dq
(p1

q + p2
q + ...+ pk

q) (4.60)

Since the derivative operator is linear, solving d
dq

(p1
q) is enough. Lets assume that

p1
q = u(q), by taking logarithms of the both sides:

ln p1
q = lnu(q) (4.61)

Next, we take the derivatives of both sides:

d

dq
ln p1

q =
d

dq
lnu(q)

ln p1 =
d

dq
u(q) · 1

u(q)

(4.62)

First, lets substitute p1
q = u(q):

ln p1 =
d

dq
p1
q.

1

p1
q

p1
q · ln p1 =

d

dq
p1
q

(4.63)
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Thus, from equations 4.58 and 4.59, Ī(q) when q=1, can be written as [6]:

Ī1(ε) = −
∑W (ε)

k=1 pk ln pk

(
∑W (ε)

k=1 pk) = 1

Ī1(ε) = −
W (ε)∑
k=1

pk ln pk

(4.64)

And D1 will be:

D1(ε) = lim
ε→0

−
∑W (ε)

k=1 pk ln pk
ln 1

ε
(4.65)

Next we run the equation 4.52 for q=2:

Ī2(ε) = − ln

W (ε)∑
k=1

pk
2 (4.66)

And D2 will be:

D2(ε) = lim
ε→0

− ln
∑W (ε)

k=1 pk
2

ln 1
ε

(4.67)

For estimating entropy and all of the above metrics (logarithmic base, I, and R; where

only two of the variables are independent, see equation 4.41), first we do the calcula-

tion for m=2, τ = 1. In this step we have the phase points and their coordinates, and

number of decision makings/observations (N). Thus we start with maximum missing

information, and move on toward the known information. A distance matrix needs

to be estimated first [57], from the phase points’ coordinates to get the information

about the distance between each phase points and the others (d) and compare it with

the tolerance metric; i.e., ε (see equation 4.54). For any d smaller than tolerance met-

ric, it gives us 1, and for any d larger than tolerance metric, it gives us 0, the result

will be an N ×N matrix containing zeros and ones.
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4.3.4.3 Dimension Analysis of CoP signal

For dimension analysis of the CoPx signal, each signal can be assumed as one mem-

ber (batch) of the ensemble with N-many observations/decision makings. So, for

this problem, we assume that we know the number of decision makings, but we

don’t know the logarithmic base, and for the estimation of it, we can only say that

it is bounded from the lower values (minimum) which is the resolution of the force

plate measurements (see Appendix A). Thus, for estimating the grid-size (lattice-

model,[58]) between the maximum and minimum values of CoPx and CoPy (in an-

other words the number of boxes in the matrix of the phase points), we can define a

new parameter (c), as a function of ε which is also related to the number of decision

making (N) and define it as bellow:

cx =
Xmax −Xmin

ε

cy =
Ymax − Ymin

ε

(4.68)

Now, if the distribution is uniform (4.11), and we know the value of c, we can estimate

the logarithmic base.

Figure 4.11: Uniform probability density (distribution) function (pdf) of CoPx on

Anterior-Posterior axis
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From uniformity of the pdf we know that:

ρ · (CoPxmax − CoPxmin) = 1

ρ =
1

(CoPxmax − CoPxmin)

(4.69)

Where 1 is the underneath area. So, for figure 4.11 we can write:

CoPxmax − CoPxmin = ∆CoPx

ρ ·∆CoPx = 1

ρ =
1

∆CoPx

(4.70)

We need to find the probable visited positions (the grid-size as a function of, ε ) inside

this uniform distribution. Since we have c:

c =
∆CoPx

ε
(4.71)

Then probability will be p = 1
c
. Please note that the parameter (c), as a function of

ε is also related to the number of decision making, N. Now, we can write the maxi-

mum entropy (described in the equation, 4.64) as the following [58],( Ch.6, Boltzman

97



Distribution):

ρ = pk =
1

c

Ī(p) = −
W (ε)∑
k=1

pk ln pk

= −
c∑

k=1

(
1

c
ln

1

c
)

= −c1

c
ln

1

c

Ī(p)max = Smax = −(ln 1− ln c)

Smax = ln c

(4.72)

From the above equation we can say that entropy is related to the ∆CoPx and the

number of decision making (N). So, we may assume the logarithmic base as c, but it

needs to be tested by the real data.

On the other hand, we can implement the ideas of the previous steps (Shannon In-

formation Theory and Missing Information) for the CoPx signal; such as, if pk in

equation 4.72 comes out to be,

pk ,
nk
N

(4.73)

Then, the condition of the phase points’ fair distribution (N-many events) has been

deteriorated, unless the probability of each phase point is 1
N

, where N is the number of

boxes (total freedom). As an example of the idea for maximization of the free-energy

or minimization of the missing information see the problem studied in Appendix C.

Thus, based on chapter 3, [57], for the CoPx signal, we can estimate the distance

matrix, and calculate the entropy measure (APproximate ENtropy) and dimension

through the following steps:

The original data (CoPx signal) is x(n) = x(1), x(2), ..., x(N), where N is the total

number of data points. the embedding dimension m and time delay τ have been

estimated from the average displacement method. Also, the tolerance metric (r or
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ε), has been estimated through the standard deviation measure [59, 57], see equation

4.80.

• First we form m-vectors X(1), ..., X(N − (m− 1)τ ) defined by:

X(i) = [x(i), x(i+1), ..., x(i+m−1)] ; i = 1, ..., N − (m− 1)τ (4.74)

where τ has been taken as 1 (see figure 4.2 against the idea at chapter 3, [57].

This expression needs to be compared to and against to equations 4.4 and 4.5.

• Next we define the distance betweenX(i) andX(j), d[X(i), X(j)], as the max-

imum absolute difference between their corresponding scalar elements, which

is the nth order distance for m-dim between two phase points. Based on the

m-dim generalized euclidean distance definition:

lim
n→∞

N∑
i=1

|X(i+ 1)−X(i)|n = Xmax −Xmin (4.75)

We can write the following equation:

d[X(i), X(j)]k=0,m−1 = max[|x(i+ k)− x(j + k)|] (4.76)

• Then, for a given X(i) , find the number of d[X(i), X(j)], j = 1, N −m+ 1)

that is ≤ r (or ε, the tolerance metric) and the ratio of this number to the total

number of m-vectors (N −m+ 1):

Lets assume Nm(i) is the number of d[X(i), X(j)] ≤ r.

Then Cm
r (i) = Nm(i)/(N −m+ 1) is estimated for i = 1, N −m+ 1.

• Next we take the natural logarithm of each Cm
r (i), and average it over i:

φmm(r) =
1

N −m+ 1

N−m+1∑
i

lnCm
r (i) (4.77)

• In the next step we increase the dimension to m + 1, and repeat the previous

steps for estimating Cm+1
r (i), and φm+1(r).

• Theoretically, the approximate entropy is defined as[57]:

ApEn(m, r) = lim
N→∞

[φm(r)− φm+1(r)] (4.78)
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In practice, the number of data points N is finite and the result obtained through

the preceding steps is an estimate of ApEn when the data length is N. This is

denoted by:

ApEn(m, r,N) = φm(r)− φm+1(r) (4.79)

The value of the estimate depends on m, r (or, the tolerance metric, ε), and

τ . As suggested by Pincus [59], m can be taken as 2 and r be taken as

(0.1, 0.25)SDx, where SDx, is the standard deviation of the original data x(n):

SDx =

√√√√ 1

N − 1

N∑
n=1

[x(n)− 1

N

N∑
n=1

x(n)]2 (4.80)

So, by applying all the above steps and conditions into the code, we can analyze

the CoPx signal for entropy approximation.
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CHAPTER 5

SIMULATION RESULTS

5.1 Sinusoidal and White Noise Signals Simulations:

Lets assume a sinusoidal signal x(t) = Asin(ωt + φ) where A is the amplitude,

ω is the angular frequency (rad/sec), and φ is phase angle (rad). Figure 5.1 shows

four different shapes of a Sine wave regarding the changes in amplitude, angular

frequency, and phase angle of a sine signal, respectively.

Figure 5.1: Four different shapes of a Sine Wave

Now, lets assume a simple sinusoidal signal with A = 1 [cm], ω = 1 [rad/sec], φ = 1

[rad], sampling frequency (fs) of 50Hz and period (T) of 100 seconds.(Figure5.2)

Next, lets create a white noise signal (WN=wgn(1000,1,0);) (Figure5.3).
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Figure 5.2: A sample Sine Wave

Figure 5.3: A sample White Noise signal

5.2 Nonlinear Analysis Results of the Sinusoidal and White Noise Signals:

By applying the s-displacement method, we can estimate the τc for both sine and

white noise signals Table 5.1. Figure5.4 shows the S(τ) plots of sine wave and white

noise, respectively.

5.3 Nonlinear Analysis Results of the CoPx signal:

The nonlinear analysis on the CoPx signals, results in finding the τc for different

dimensions. Moreover the related S(τ) plots for each CoPx signal provide more
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(a) S(τ) of sine wave

(b) S(τ) of White Noise

Figure 5.4: S(τ) plots of a) sine wave and b) White Noise signals
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Table 5.1: Time delay (τc) values for sine and white noise (WN) signals

m τc (Sine) τc (WN)

2 19 2

3 12 2

4 9 2

5 7 2

6 6 2

7 5 2

8 5 2

9 4 2

10 4 2

information about the behaviour of the attractor in infants. We have observed the

changes in S(τ) plots, from a noise like form in T1 toward almost an adult plot (Figure

5.6) in T3, but we can confirm that there is still time needed for the infants to complete

this process and reach to the desired adult pattern in case of the postural control

and quiet stance behaviour. Our observation in infants’ and adult’s S(τ) plots give

us critical information regarding the slope of the plots, and their velocity regarding

the dimension. regarding the slope, we see that as long as the initial slope is high

in infants, the pattern is close to the white noise signal, while the adults S(τ) has

smoother initial slope. On the other hand, from the plots of Sine we can say that the

dimension m also affects the slope of the plots such that for small m values, the slopes

are steep, while for larger m, it gets sharp. The following plots (figure 5.5) are the

S(τ) plots of an exemplar subject in T1, T2, and T3.

However, figure 5.5 is just the demonstration of an exemplar subject, and the overall

behaviour in each subject is different. Thus, the reliable results can be obtained from

the statistical analysis.
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(a) S(τ) of T1

(b) S(τ) of T2

(c) S(τ) of T3

Figure 5.5: S(τ) plots of an exemplar female subject in a) T1, b) T2, and c) T3
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Figure 5.6: S(τ) plots of and Adult subject

5.3.1 Entropy results of the Five common female subjects

First the entropy was calculated for τ = 1 [57]. Then, we used the obtained τc

values for the entropy estimation. The approximate entropy (ApEN) values for τ = 1

and τ = τc are presented in table 5.2. Based on this table, we can see an increase

in the entropy for τ = τc, especially regarding T1 to T3. These findings are in close

conformity with our hypothesis, in which we mentioned an expectation of an increase

in entropy metric as the infants develop their postural control.

5.3.2 Entropy results of the all subjects

The results of the nonlinear analysis for all the subjects (τc and entropy), were ob-

tained for m = 2, ..., 10. the mean of the entropy for each trimester show an increase

in entropy from T1 to T3 (T1=0.72, T2=0.86, and T3=0.88). Moreover, the entropy

of an exemplar adult subject were estimated, and it was 0.73.

5.4 Statistical Analysis

In the statistical analysis of this section we want to know if our independent variable

which is the three trimester groups and is a categorical variable, has a significant

influence on the dependent variable that’s the entropy metric. So, the null hypothesis
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is that there’s not a significant difference in the entropy values of the infants during

their first 6 month of post standing (T1, T2, T3), and the alternative hypotheses, which

is also known as the research hypothesis or scientific hypothesis, is that there is an

increase in the entropy values of the infants during their first 6 month of post standing

(T1, T2, T3), and we can follow the spatiotemporal evolution from this analysis.

There were two groups of analysis based on the subjects. First, we had repeated

measure analysis for our 5 common female subjects, and second, we did General

Linear Model Univariate (Multi-factor ANOVA) for 31 subjects.

5.4.1 Repeated Measure ANOVA of Five female subjects

In this method, we compare the entropy results of the 5 common female subjects that

have come to all the three trimesters. Therefore, the analysis need to be repeated

measure ANOVA with significance level of 0.05. In the repeated measure ANOVA,

there is one factor to do the analysis on the within subjects variables (Trimester) for

the entropy metric. Results showed a significant increase in entropy from T1 to T3, at

p<.001. Figure 5.7 and table 5.3, show the increase and significantly different metrics

of the entropy from T1 to T3.

Figure 5.7: Five common Female subjects’ Entropy results from T1 to T3
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5.4.2 Multi factor ANOVA of all subjects

The multi-factor ANOVA have been analyzed the results of the entropy metric in all

the subjects. So, a factorial ANOVA (Univariate) was conducted to compare the main

effects of Trimester, and Gender (Independent Variables) as well as their interaction

effects on the entropy metric (Dependent Variable). Results showed significantly

higher entropy for T2 and T3, comparing to T1. There was no significantly different

report for the gender. (Figure 5.8, Table 5.3)

Figure 5.8: All subjects’ Entropy results in each gender from T1 to T3

With a comparison between the infants, Adults, and Sine and white noise signals

(Figure 5.9), we can see that while the infants entropy increased from 12 to 20 months,

the adult entropy is somewhere in between, meaning that the entropy of infants has

much more way to path, and it is not reached to the stable, fixed entropy value of

adults, yet. On the other hand, we can see that entropy of a sinusoidal signal (periodic

signal), is almost 0, meaning that the entropy is minimum and every thing is known,

while the entropy of a white noise is larger than 1, meaning that the entropy here is

maximum and nothing is known.
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Figure 5.9: Entropy of all the subjects, compared to adults, sinusoidal signal, and

white noise.
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Table 5.2: τc values and approximate entropy (ApEn) of the overall CoPx signals in

five common female subjects for m = 2, .., 10

CoPx signals in five common female subjects

Subject

Metric
τc ApEn (φ2 − φ3)

m = 2 3 4 5 6 7 8 9 10
For

τc

For

τ = 1

Subject1

T1

T2

T3

9

10

20

6

7

14

5

6

11

4

5

9

3

4

7

3

4

6

3

3

6

3

3

5

2

3

5

0.81

0.95

0.97

0.72

0.59

0.65

Subject2

T1

T2

T3

12

13

21

7

9

16

6

6

12

5

5

10

4

4

8

3

4

7

3

4

6

3

3

6

3

3

5

0.59

0.92

0.93

0.59

0.62

0.61

Subject3

T1

T2

T3

10

12

18

7

9

13

5

8

10

4

6

8

4

6

7

3

5

6

3

5

6

3

4

5

3

4

5

0.79

0.99

0.82

0.62

0.70

0.52

Subject4

T1

T2

T3

10

20

12

8

15

9

6

11

7

6

9

6

6

8

6

5

7

5

5

6

5

4

6

4

4

5

4

0.86

0.73

0.99

0.70

0.46

0.74

Subject5

T1

T2

T3

20

14

15

15

10

11

11

8

8

9

6

7

8

5

6

7

5

5

6

4

5

5

4

4

5

4

4

0.61

0.84

0.91

0.52

0.46

0.54
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Table 5.3: Mean and Standard deviations of all the significantly different entropy

metrics of overall CoPx in Repeated Measure (RP) and Multi Factor (MF) ANOVA

Entropy

IV

DV RM

(5 subj.)

MF

(All subj.)

Trimester

T1

T2

T3

0.73 ± 0.13

0.89 ± 0.11

0.92± 0.07e

0.72 ± 0.08

0.86 ± 0.13d

0.88± 0.11e

a. T1>T2, b. T1>T3, c. T2>T3

d. T2>T1, e. T3>T1, f. T3>T2
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CHAPTER 6

DISCUSSION AND CONCLUSION

6.1 Discussion and Conclusion on the Results of Linear Analysis

6.1.1 Overall CoPx time domain and frequency domain

• Stabilogram: In the stabilogram plots, we see a noticeable shrinkage both in

Anteroposterior and Mediolateral directions. The change of this pattern in the

stabilogram plots from T1 to T3 is related to self-perception and the way the

infant uses his/her space around, beside the demonstration of development of

the infant’s postural control.(Figure 3.3)

• Phase Plane: In the phase plane plots, we see a lot of high and low veloci-

ties, demonstrating the way infants have been visited the positions during the

quiet stance. There are highly visited positions, as well as rarely visited po-

sitions. Also there are high velocity regions beside low velocity regions. The

positions that are rarely visited have reached the position threshold, meaning

that smaller the position, lower the probability of reaching the threshold. So we

can see from the figure that the positions around 0 are frequently visited with

all the velocities, while by getting further from the origin, the visited positions

decrease and it reaches to the position threshold and it visit those areas with

selective high velocities otherwise the subject will fall. As a result, threshold is

a function of position. When position is small, threshold is also small, and by

expanding the position, threshold also increases [60, 61, 62]. In another words,

to fill the space, velocity needs to be low (in the form of lots of dots/data points

near each other), but for an empty space, the velocity needs to be high. How-

ever, for a newly standing infant, he/she generally visits all positions with all
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velocities in order to reach a stable, fixed pattern of quiet stance. (Figure 3.4)

• Frequency domain plots of overall CoPx and CoPy: The frequency shift to

the left (lower frequencies) means that by growing, infants get more experi-

enced in controlling their balance and posture and as a result the magnitude of

the frequency and CoP decrease by time. Thus, it still needs time to achieve to

the adult plot, suggesting that the period of 6 month is good but not enough for

an infant to progress in the spatiotemporal evolution and reach the final stage

of the development [14, 63]. (Figure 3.5)

6.1.2 Regional CoPx and Pressure results in both time and frequency domain

and their comparison with adults:

From the time domain statistical analysis results (Multi factor ANOVA) of the pres-

sure signals, the Mean pressure of foot regions from the highest to the lowest was

Hind, Mid and then Fore foot in all three trimesters in infants, while the mean pressure

in the adults from the highest to the lowest was Hind, Fore and then on Mid region.

Mean Hind pressure increases while passing from infancy to adults (Figure 3.23).

We conclude that the existence of higher pressures in Hind and Mid foot, respec-

tively, and low pressure in Fore foot may point to the fact that Hind region is acting

as a support while front region has the least pressure, and may act as the controller

[35, 36, 37, 38] (Figure 3.12). Moreover, the figure 3.13 that is presenting the varia-

tion of the plantar pressure distribution during the three trimesters, shows that most

of the highest pressure is observed in the Hind and medial/lateral side of the Mid foot

against to the pressure distribution observed in adults. Because, when the arch of the

foot is developed, medial portion of the Mid region of the foot loses its contact with

the ground [45]. Beside the development in the heel-toe contact pattern, studies from

cross-sectional research show a change in pressure distribution from the Mid foot of

newly standing infants to the heel and Fore foot in time [64]. Another study also

mentioned an important note regarding the pressure distribution. It has been shown

that when pressure variables are taken into account, grouping the growing infants by

walking experience does not significantly change relative contact area, arch index,

peak pressure, or relative maximum force [65]. From the start of independent walk-

114



ing until six months later, Bertsch et al. found that the Mid foot’s relative contact time

decreased from 75.8% to 65.4 percent of the gait cycle and its load decreased from

30% to 20% of the overall impulse on the plantar foot surface [22]. These results

have been explained by the medial longitudinal arch’s osseous growth [22], beside

the decreased need to load the Mid foot for more contact area and muscle control due

to an improvement in stability [66].

The variance of the pressure in infants signals were significantly high in Hind re-

gions compared to Mid and Fore foot, although there was a slightly decrease in the

Hind foot variance from T1 to T3. Variance of Fore foot also has a slight decrease

from T1 to T3. Moreover, as a comparison of an infants variance with adult’s, we see

a noticeable drop in all the foot regions, with Hind foot as the highest and Mid foot as

the lowest variance (Figure 3.24). These finding overlap with the following studies on

the plantar pressure distribution [41]. As one gains more walking experience, there is

a lateral shift in load bearing that occurs along with a shift toward initial heel contact.

This is demonstrated by the more lateral deviation in the center of pressure under the

growing foot [67]. In comparison to older children, infants walk with modest absolute

plantar pressures and high contact areas (relative to body weight). [68, 69, 70]. We

also have a finding relative to this section, indicating that the Mid region has a sig-

nificantly larger frequency band of power (about 2Hz, which is resonance frequency

of walking) compared to Fore and Hind regions. Infants who have started walking on

their own for 0–2 months have plantar pressures near 25–50% of an adult [67]. Thus,

the higher subcutaneous fat on the newborn foot, the smaller body weight to foot con-

tact area ratio, the immature skeleton, and the slower walking speeds in infants have

all been implicated in this [22, 67, 71].

The CFREQ results of pressure signal in infants decreased from T1 to T3 (toward

the lower frequencies), with the regional magnitude ratio of Mid>Fore>Hind. While

the adults signal show a smaller CFREQ result in Hind and Fore foot and with the

regional magnitude ratio of Mid>Hind>Fore (Figure 3.25). This findings show that

while the frequency of pressure decrease in Hind and Fore foot in infants from T1 to

T3, and more noticeably in adults, the frequency of pressure in Mid foot is high with

respect to the other two regions, both in infancy and adulthood. The reason of this

high frequency in Mid foot may be due to the mediolateral adjustment in infancy and
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the formation of arch in adulthood [72].

The CFREQ results of CoPx signal in infants decreased from T1 to T3 (toward the

lower frequencies), with the regional magnitude ratio of Fore>Mid>Hind. The adult

results show smaller values in Fore and Hind regions than of the infants’ T3, while

the Mid region shows a significant increase, being larger than the Mid foot in all the

three trimesters (Mid>Fore>Hind). This is due to the role of Mid foot in carrying

vibration and transmitting load [72].

The FD results of pressure and CoPx signals showed an increase in all the three

regions from T1 to T3 in infants. The adult results on the other hand, reveal an

increase in Fore and Hind foot with respect to T3, while Mid foot showed a much

more slighter increase with respect to T3 [73] (Figure 3.29 and 3.30). We analyzed

the complexity issue in the signals better by estimating the entropy measures and/or

information dimension later, and found that missing information was higher in infants

when compared to adults.

The results of 50% and 90% power frequency of pressure and CoPx generally re-

vealed that frequency domain characteristics of the spatiotemporal evolution presents

power shifts to lower frequencies during infants’ developmental periods from 12 to

20 months, and then lower in adults, see figures 3.31, 3.32, 3.33, 3.34. This de-

velopmental process manifests through gaining long range correlations in regional

CoPx dynamics [74, 75]. Further, we Looked into spatiotemporal evolution of in-

fants’ quiet stance, with respect to foot regions. The results showed motility of

CoPx in the front region of the foot with significantly larger value than Mid and

Hind regions[37, 38].(Figure 3.22)

Talking specifically, in the 90% power frequency of pressure we can follow the change

in the role of the Fore foot, which caused a significant decrease in the frequency

from T1 to T3 (Fore>Hind) towards adults (Fore<Hind). Also, Mid region have the

highest frequency in adults with respect to Fore and Hind (Figure 3.32). The results

of the 90% power frequency of CoPx however, showed a continuous decrease of the

frequency in Fore and Hind regions from T1 to T3, and Adults, while the Mid foot

frequency increased noticeably in adults (3.34).
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6.2 Discussion and Conclusion on the Results of Non-Linear Analysis

First the entropy was calculated for τ = 1 [57]. Next, we use the obtained τc values

for the entropy estimation [76]. we can see high entropy results at T1 to T3, compared

to adults. These findings are in close conformity with our hypothesis, in which we

mentioned an expectation of an increase in entropy metric as the infants develop their

postural control.

Moreover, in the nonlinear analysis the small data collection period causes restrain

on the estimations, because the longer the period (3 minuets), the more reliable the

results. However, since the study is on the infants, especially at the beginning of

independent standing and walking period, it was not possible to collect a longer data

from them without getting support.

6.3 Future work:

1. using a more reliable pressure pad for infants with higher sensitivity and lower

noise detection

2. Adding kinematic data for Center of Mass (COM) analysis

3. Enlarging the data collection groups to cover all group of ages

4. Study on the copy signals (data is already collected)

5. study through a mathematical model relation between nonlinear dynamics and

stochastic noise characteristics.
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Appendix A

PATTERNED NOISY DATA PROBLEM

During the time domain analysis of the data collected from force plate, we faced with

some noisy pattern graphs, and tried to understand the reason of this pattern. We

named it Patterned noisy data and started to investigate the possible causes of this

problem.

This problem mostly happened in velocity and phase plane graphs during the analysis

of CoPx and CoPy. We reviewed all subjects of first group, we compared the phase

plane graphs of each one, and we saw that in some case, there is no patterned noisy

data or interruption, in some others there are patterned noisy data on the right side of

the graph (the positive side). While on some others the patterned noisy data is on the

left (negative) side of the graph. The positive side refers to anterior and the negative

side refers to posterior sway. Initially, we thought that this problem occurs wherever

the infant spends more time at a position, by looking at more subject’s phase planes,

we (thought to reject this hypothesis but,) doubted this hypothesis by observing some

reversed cases.

After reviewing all the phase plane graphs of CoPx of the subjects of the first group,

we chose two subjects based on a good and bad phase plane graph. The one with the

most patterned noisy data graphs was named second Subject. The good one, on the

other hand, was named first subject. By reviewing the data analysis of the force plate

and Pressure pad, we considered the time series, velocity, and phase plane of CoPx

for both selected subjects. To see the differences between the data which is collected

by force plate and pressure pad, we plot the time series and velocity of both devices

(Force Plate (FP) and Pressure Pad (PP)), in one graph. For phase plane graphs, it is

better to plot separately to see the differences.
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For calling a pressure pad data in MATLAB, first, we need to run the same trial of the

subject in Matscan software. After calling the data, regarding which part of the data

is needed, we need to open that part of the analysis in Matscan (in this case we need

the anterior-posterior graph) and save that part as an excel file to the related folder.

Then, in MATLAB and through the same folder, we find that excel file and import it

as data. Then, all functions are applicable to this data file in MATLAB. For naming

the pressure pad data, since in this part of the analysis we look into the CoPx data, I

named the related data as PPAP which refers to Pressure Pad Anterior-Posterior data.

The time series plot of CoPx of first subject was smooth data with a small amount

of noise. By analyzing the velocity and plotting the phase plane graph of CoPx we

noticed a good one with almost no patterned noisy data. And we guess that the small

amount of noise is related to the device and is nothing related to the infant. So, this is

a resolution problem of the device (see Figure A.1).

The time series plot of CoPx of the second subject was noisier. By analyzing the

velocity and plotting the phase plane graph of CoPx we noticed a huge amount of

patterned noisy data in force plate analysis (see Figure A.2).

For the velocity plots, to see the patterned noisy data better, we change the marker,

marker size, and line style for each graph. Here the blue one indicates the velocity

of the force plate and the red one indicates the velocity of the pressure pad. By com-

paring these two velocities we can see that in force plate velocity, it has been visited

limited velocities and there is patterned noisy data problem, however in pressure pad

it has been visited almost every velocity. So, the force plate data is jumpier than

pressure pad data. To understand this comparison better we can investigate the way

each device collects the data. As we know, these velocity data are originally derived

from CoPx data, however, the collecting data method is different in each device. The

pressure pad measures weighted average of moment arms from distributed load sys-

tem, pixel by pixel, however, the force plate collects resultant force through the strain

gauges on its four bases. therefore, there is a data quality difference base on these

two data collection methods, in another word, the data collected by the force plate

has some information loss and the data collected by pressure pad is the rich one and

has been able to catch all the positions which had been visited by the infant. However,

our guess is that this amount of noise and patterned noisy data problem is originated
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(a) Time Series of CoPx in FP and PP (b) Time Series velocity of CoPx in FP and PP

(c) Phase plane of CoPx in FP (d) Phase plane of CoPx in PP

Figure A.1: Resolution comparison of the force plate and pressure pad on the first

exemplar subject a) Time Series of CoPx in FP and PP, b) Time Series velocity of

CoPx in FP and PP, c) Phase plane of CoPx in FP, d) Phase plane of CoPx in PP
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(a) Time Series of CoPx in FP and PP (b) Time Series velocity of CoPx in FP and PP

(c) Phase plane of CoPx in FP (d) Phase plane of CoPx in PP

Figure A.2: Resolution comparison of the force plate and pressure pad on the second

exemplar subject a) Time Series of CoPx in FP and PP, b) Time Series velocity of

CoPx in FP and PP, c) Phase plane of CoPx in FP, d) Phase plane of CoPx in PP
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form not only the device noise but also the quality of collected data in each case as

well as the infant itself. So, this is a resolution problem of the device and data, as

well as the human posture of the infant and the way she uses her foot and posture.

Therefore, for the human portion, we presumed that this kind of patterned noisy data

problem is maybe due to the usage of the forefoot and its role in this variation because

in most of the cases the problem occurs in the right (positive) part of the graph which

is related to forefoot, and we know that forefoot is more active than Hind foot. How-

ever, we need to demonstrate this assumption by entropy measurements and statistical

proof.

We also think about the differences between these two subjects, and we assume that

maybe this patterned noisy data problem arises when the infant’s data is noisy, due

to her posture usage. Because in first case, the data was almost smooth and therefore

there was no significant patterned noisy data problem in the graphs (velocity and

phase plane).

Also, by reviewing Second trimester’s (T2) common subjects with T1, one of the

important facts is the appearance of patterned noisy data on the highly visited area

of the subjects. After monitoring all these results, and the results from two subject’s

analysis of T1 we consider the negative aspects of filtering as well. Since we believe

that in the case of filtering, we may lose some critical information about every posture

and motor control development in infants.

Moreover, the amount of measurements per each frame is conceptually different in

each device, the resolution, precision, and accuracy of the collected data is different

as a result. In another words, while pressure pad can collect for example 80 pixel

(spatial sample) per frame form an infant’s feet (20 for each region: HR, FR, HL,

FL), force plate is able to collect only one resultant at this range of time. Therefore,

the difference in the quality of each device’s data is predictable. Hence, actually this

is the comparison of a poor data with a rich data, and as a result this problem can’t be

solved by filtering, because not only the problem of the poor data doesn’t get better,

but also, we may cause more deficiency on it and cut even more information, as the

problem is not the matter of noise only, but also is a matter of missing information.

Therefore, we decided to use pressure pad generated CoPx signals.
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Another hypothesis is that if the search is an explorative dynamic type, the patterned

noisy data will not happen. And this needs to be proven by entropy measurements.

In the adults there is no exploration and they are acting more exploitatively. And if it

is an exploitative one, the is a chance of appearance of this pattern. Moreover, noise

is a tricky element here. It sometimes acts in favor of exploration, and sometimes in

favor of randomness.

An Additional issue which we wanted to study, was the effect of moments on the

appearance of patterned noisy data problem. We wanted to see if the problem is

originated form the My or Mx when calculating the CoPx or CoPy equations:

CoPx =
−My(t)

Fz(t)
(A.1)

CoPy =
Mx(t)

Fz(t)
(A.2)

Meaning that, the pattern which we saw in velocity graphs is maybe due to the My

signals not the Fz. therefore, we need to prove this fact by running the MATLAB

code for My and Mx which are data 5, and data 4 respectively. And we look into

these signals the same way we do for velocity signals (changing the marker, marker

size, and line style). And here, our hypothesis is that we will see these patterned

noisy data problems in the moment signals and not the Fz signal. Because Fz signal

is a fixed signal coming from the weight of the subject, so there is a low possibility

that this problem is caused by the Fz signal. Another reason for this hypothesis is

that, since this patterned noisy data is happened only in the force plate signals, and

we know that the data collection method in force plate is different from pressure pad,

(the data in pressure pad is being collected from distributed load, however in force

plate it is collected from the weighted average moment arms), this can be the main

reason of this problem happening in the force plate and not in the pressure pad. One

More point here is that we do not expect the appearance of this pattern in the copy

signal since the medial-lateral side of the body is not like an unstable pendulum (AP),

it is a stable pendulum. However, since infants maybe do not have the ability to use

both feet synchronous and simultaneously, there is a chance that ML is also unstable,
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and this noise appears in the copy signals as well.

For this purpose, we started with two exemplar subjects from the T1, one of the sub-

jects had a good pattern without any noise (Figure A.3) and the other had a dramatic

patterned noisy data problem (Figure A.4). We compared My and Fz graphs for both

subjects, to see if the problem originates from the My signal.

By comparing these two figures we can see that this patterned noisy data is in the

moment signal and not the other one (Fz). There are jumps in the moment graph, but

since this subject’s data is the good one, we should see if this problem is a resolution

problem or not. By zooming in the graph, we can see that jumpy pattern is obvious in

the positions in which the infant has spent more time there. However, since the scales

in these two graphs are different, if we zoom in in the Fz signal, we can also see

some small jumps. But in this small scale, this jumpy pattern is definitely a resolution

problem of the device not the effect of human. Then we continued with the second

exemplar subject, which had a dramatic patterned noisy data problem.

In the Fz graph and My graph, there was a significant patterned noisy problem. Then

for comparing these two subjects, we created a common axis scale so that each sub-

ject’s graph is on the same scale. And we can see that in second Subject’s My graph

there is a behavior pattern which is originated from the human, not the instrument.

For proving this statement, we need to show that in the second Subject’s My graph if

we zoom in, we should find some dots between two jumps so that we prove this is not

a resolutions problem of the instrument. However, in this subject, we couldn’t find

any dot (data) between jumps. Which maybe means that it is an instrument resolu-

tion problem for My signal. Yet, we understand that this problem originated from the

My signal and it is not related to Fz signal. Because My signal is created by human

movements and this is the reason for the problem. And maybe this problem is due to

how the instrument collects My signal.

Moreover, the appearance of patterned noisy data in My signals does not mean that

our phase plane also has the same pattern. Since we saw that here in the first subject

(the good one without any patterned noisy data problem), the My signal had patterned

noisy data while the same subject’s phase plane graph had nothing but a good pattern

without any noise.
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(a) Phase plane of CoPx in FP

(b) Fz signal of CoPx

(c) My signal of CoPx

Figure A.3: Resolution comparison of the force plate of the first exemplar subject a)

Phase plane of CoPx in FP, b) Fz signal of CoPx, c) My signal of CoPx
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(a) Phase plane of CoPx in FP

(b) Fz signal of CoPx

(c) My signal of CoPx

Figure A.4: Resolution comparison of the force plate of the second exemplar subject

a) Phase plane of CoPx in FP, b) Fz signal of CoPx, c) My signal of CoPx
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Another important hypothesis here is the difference between these two subject’s be-

haviors. By comparing the range of movement in both subjects we can see that when

the subject uses a big range of span or sway (6Nm) during the quiet stance, due to

the resolution problem of the instrument, the dots in between the jumps can’t be seen

(subject one, with a good pattern in the phase plane) and we assume that this is only

a resolution problem and not the human behavior effect, however, when we study the

second subject (subject two, with a patterned noisy data problem in the phase plane),

we can see that the second subject uses a smaller range of sway (2Nm) during the

quiet stance, so if there were any data in between we were able to locate them, how-

ever in this small range it is only the resolution problem that appears and we couldn’t

find any dot in between. By zooming a bit more, we want to understand the difference

between the behavior of these two subjects: In the second subject, we can see that she

insisted in one moment for a while, however, the other one did not have the same

insistency in a moment for a while. This means that for example in the moment of

0.45 we have several data points in a raw for the second subjects, however, the first

subject has visited the 0.45 moment only once and then passed to other moments and

has acted more scattered. Our hypothesis here is that the reason for acting jumpy and

scattering of the first subject is maybe due to her effort for controlling her balance and

it is a try for preventing a fall. However, the second subject has already learned the

balance control and is performing a quiet stance by trying to keep her balance in spe-

cific moments which are the ones that keep her in the right position. This hypothesis

means that our first subject is acting more exploratively and has scattered equilib-

rium points, and the second one is acting more exploitative and insisted to create her

equilibrium point around a specific point. In another word, for the second subject

instrument resolution is faced with one moment however for the first subject since

there are lots of moments, it has used the same instrument with the same resolution

wider and freely in a scattered pattern. So, we assume that if a subject insists on using

a limited range of the sway and movements, it puts pressure on the rang of the instru-

ment and as a result resolution problem happens. On the other hand, if a subject uses

a larger area of sway and movements with more moments, the instrument collects the

data freely and it does not cause any limit or resolution problem. So, for proving this

point, we need to control this hypothesis for all the subjects and see if it is true for all

of them.
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(d) Phase plane of CoPx in FP (e) My signal of CoPx

Figure A.5: Resolution comparison of the force plate of a male exemplar subject a)

Phase plane of CoPx in FP, b) My signal of CoPx

For providing more proof, we continued with another subject (Male):

By looking at his phase plane graph of the force plate we can see that there are some

patterned noisy data on the right side of the graph. By zooming in the graph, we can

see that there are some scattered data in between the jumps as well. Then we plot the

My signal of this subject’s data.

In the My graph, we see that the span length of this subject is large (9Nm) and it is

similar to first subject’s scale. And it acts explorative in all the graphs. So, based on

our previous hypothesis this subject’s phase plane graph should be noiseless, while

there are some on the right side of the graph, which can be the human intervention,

but we are not sure yet. Another guess here is that this subject’s behavior is hybrid.

Meaning that in some positions he was explorative and sometimes is exploitative.

Sometimes he had a search and sometime had tried to stay in one moment. And in

positions in which he had tried to stay in one moment and behaved exploitatively, this

pattered noisy data appeared.

Now the question is that in the My graph where is the position of exploitative behavior

and where is the position of explorative one? And if we find this exploitative part, we

can find the position in which the instrument resolution problem happens.

Now, if we want to look into the problem from the physiologic point of view, the
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question is that what is the meaning of explorative behavior in physiology? Which

strategies are being used in this behavior?

Question: based on the above hypothesis, will this patterned noisy data problem gets

worst in the coming months of infants? In another word, does this problem arise when

the infant gets professional and reaches her/his best quiet stance skill?

Yes, we expect this. Because we see more exploitative behavior in adults.

So, we find out that the reason for a scattered pattern in My graph is not exactly the

same reason of scattered pattern appearance in the phase plane graph. And we cannot

be sure about the resolution problem of the force plate by just studying the phase

plane graph, and we need the My signal as well.

Another important point that we faced was the amount of time in which region the

infant spent. By running the code without detrending we find out that the My signal

is negative in anterior and it is positive in the posterior part of the graph, So, by

comparing the un-detrended phase plane graph of CoPx with My signal, we can study

the regions that infant has spent time there.
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Appendix B

DERIVATION OF INFORMATION ENTROPY USING STIRLING’S

APPROXIMATION

Based on the information from Chapter 4, we have:

The definition of information can be written as [6]:

I , K lnR (B.1)

Where, K = log2 e. So:

I = log2 e lnR

= log2R

2I = R

(B.2)

Where, 2I = R is a random walk since this is a binary event with logarithmic base of

2 (points (phase) at the event). "I" is the number of decision making which is known

as the information. R is the realization factor (at the reservoir, possible combinations

of the points) and can be written as:

R(N, n) =
N !

n!(N − n)!
(B.3)

Where, N is the number of decision makings (freedom), and n is the number of out-

comes (phase points).

For a binary process via the Stirling’s approximation we can rewrite the equation
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4.41, by substituting R, as the following:

I , K ln
N !

n!(N − n)!
(B.4)

Since the information increases with the number N of the realisations and thus with

the number of decisions, the mean value is of interest. Therefore, the information per

decision is [6]:

Ī(p) =
I

N
(B.5)

We can write the binary expression n!(N−n)! by generalizing to k-many events (log-

arithmic base is W (ε) in this case, see equation 4.73) as Πni!, where i = 1, ...,W (ε),

and by using the Stirling approximation (lnN ! = NlnN −N ):

Ī(p) = K
1

N
lnR

= K
1

N
ln

N !

Πni!

= K
1

N

(
ln(N !)−

∑
lnni!

)
= K

1

N

(
(NlnN −N)−

∑
(niln(ni)− ni)

)
(B.6)

By using the fact that the
∑
ni = N (The sum of all items in each box must be equal

to the total number of items):

= K
1

N

(
(NlnN −N)−

∑
(niln(ni) +N

)
= K

(
1

N
(NlnN)− 1− 1

N

∑
(niln(ni) + 1

)

= K

(
1

N
(NlnN)− 1

N

∑
(niln(ni)

) (B.7)
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Now, by using the fact that pi = ni

N
, which is the probability of being in the nthi box

(see equation 4.73), and therefore ni = piN :

= K

(
1

N
NlnN − 1

N

∑
piNlnpiN

)
(B.8)

Using log properties of multiplication we can rewrite as:

= K

(
1

N
NlnN − (

1

N

∑
piNlnN +

1

N

∑
piNlnpi)

)
(B.9)

Since NlnN is constant with respect to the summation over i:

= K

(
1

N
NlnN − (

1

N
NlnN

∑
pi +

1

N

∑
piNlnpi)

)
∑

pi = 1, So

= K

(
1

N
NlnN − 1

N
NlnN − 1

N

∑
piNlnpi)

)

= −K
N
·N
∑

pilnpi

Ī(p) = −K
∑

pilnpi

(B.10)
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Appendix C

EXAMPLE OF A 2-D SIGNAL AND ESTIMATING THE INFORMATION

AND DIMENSION

lets assume a 2-D signal with spatial tolerance metric of ε. First, we need to partition

the space which is deciding on the value of ε. Second, counting the phase points at

each box, and third, estimating the dimension. We iterate the above algorithm until

finding the required metrics and variables [6]:

• Counting the phase points at each box: Based on the two investigated prob-

lems ([6]) we solve an example of information and dimension equations (4.52

and 4.53) for 1) fixed point, and 2) limit cycle:

1) Fixed point:

– For ε = 1
2
, W (ε) = 1, and pk = 1, see figure C.1 a

Ī(ε) = −K
W (ε)=1∑
k=1

pk ln pk

= −K(1) ln(1)

= 0

DI =
Ī(ε)

ln 1
ε

= 0

(C.1)
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(a) ε = 1
2

, W = 1, pk = 1 (b) ε = 1
4

, W = 1, pk = 1

(c) ε = 1
2

, W = 2, pk = 1
2

(d) ε = 1
4

, W = 4, pk = 1
4

Figure C.1: Estimation of the information and dimension equation of a signal, for a)

ε = 1
2
, W = 1, pk = 1, b) ε = 1

4
, W = 1, pk = 1, c) ε = 1

2
, W = 2, pk = 1

2
, d) ε = 1

4
,

W = 4, pk = 1
4

[6]
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– For ε = 1
4

and W (ε) = 1, and pk = 1, see figure C.1 b

Ī(ε) = −K
W (ε)=1∑
k=1

pk ln pk

= −K(1) ln(1)

= 0

DI =
Ī(ε)

ln 1
ε

= 0

(C.2)

Thus, no matter how small we select the ε, if the attractor is a fixed point,

the missing information and its dimension will be equal to zero (anything

is known and the signal is deterministic).

2) Limit cycle:

– For ε = 1
2

and W (ε) = 2, and pk = 1
2
, see figure C.1 c

Ī(ε) = −K
W (ε)=2∑
k=1

pk ln pk

= −K(
1

2
ln(

1

2
) +

1

2
ln(

1

2
))

= −K(2
1

2
ln(

1

2
)

= − log2 e(− ln 2)

= 1

(C.3)
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– For ε = 1
4

and W (ε) = 4, and pk = 1
4
, see figure C.1 d

Ī(ε) = −K
W (ε)=4∑
k=1

pk ln pk

= −K(4
1

4
ln(

1

4
))

= − log2 e(− ln 22)

= 2

(C.4)

By induction when dividing 1 into N (see equation 4.71):

ε =
1

N
(C.5)

Ī(ε) = −K
W (ε)∑
k

pk ln pk

= −K
W (ε)=N∑
k=1

1

N
ln(

1

N
)

= −K ·N · 1

N
· (− lnN)

= K lnN = log2 e lnN

= log2N = log2

1

ε

Ī(ε) = − log2 ε

(C.6)

Where, N = 1
ε
. Next, estimate the Dimension D(I):

DI =
Ī(ε)

ln 1
ε

=
− logε2
ln 1

ε

(C.7)
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By taking the limit of the above function for ε→ 0, the equation will be equal

to ∞∞ . Through the L’Hospital’s rule we can rewrite it as follow:

DI = lim
ε→0
− log2 e ln ε

ln 1
ε

= −
d
dε

log2 e ln ε
d
dε

ln 1
ε

DI = 1

(C.8)

Since it is uniformly distributed along the line (not along 2-D matrix!), missing

information (I) and dimension (D) have the maximum entropy along the line

(missing information is maximum along the line).
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